skip to main content
10.1145/3229434.3229478acmconferencesArticle/Chapter ViewAbstractPublication PagesmobilehciConference Proceedingsconference-collections
research-article

GATO: predicting human performance with multistroke and multitouch gesture input

Published:03 September 2018Publication History

ABSTRACT

We introduce GATO, a human performance analysis technique grounded in the Kinematic Theory that delivers accurate predictions for the expected user production time of stroke gestures of all kinds: unistrokes, multistrokes, multitouch, or combinations thereof. Our experimental results obtained on several public datasets (82 distinct gesture types, 123 participants, ≈36k gesture samples) show that GATO predicts user-independent gesture production times that correlate rs > .9 with groundtruth, while delivering an average relative error of less than 10% with respect to actual measured times. With its accurate estimations of users' a priori time performance with stroke gesture input, GATO will help researchers to understand better users' gesture articulation patterns on touchscreen devices of all kinds. GATO will also benefit practitioners to inform highly effective gesture set designs.

References

  1. Johnny Accot and Shumin Zhai. 1997. Beyond Fitts' law: Models for trajectory-based HCI tasks. In Proc. CHI '97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Jr. Allan C. Long, James A. Landay, Lawrence A. Rowe, and Joseph Michiels. 2000. Visual similarity of pen gestures. In Proc. CHI '00. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Abdullah Almaksour, Eric Anquetil, Réjean Plamondon, and Christian O'Reilly. 2011. Synthetic handwritten gesture generation using Sigma-Lognormal model for evolving handwriting classifiers. In Proc. IGS '11.Google ScholarGoogle Scholar
  4. Lisa Anthony, Radu-Daniel Vatavu, and Jacob O. Wobbrock. 2013. Understanding the consistency of users' pen and finger stroke gesture articulation. In Proc. GI '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Lisa Anthony and Jacob O. Wobbrock. 2012. $N-protractor: a fast and accurate multistroke recognizer. In Proc. GI '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Caroline Appert and Shumin Zhai. 2009. Using strokes as command shortcuts: Cognitive benefits and toolkit support. In Proc. CHI '09. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ilhan Aslan, Ida Buchwald, Philipp Koytek, and Elisabeth André. 2016. Pen + mid-air: An exploration of mid-air gestures to complement pen input on tablets. In Proc. NordiCHI '16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Shiri Azenkot, Kyle Rector, Richard Ladner, and Jacob Wobbrock. 2012. PassChords: Secure multi-touch authentication for blind people. In Proc. ASSETS '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gilles Bailly, Jörg Müller, and Eric Lecolinet. 2012. Design and evaluation of finger-count interaction: Combining multitouch gestures and menus. Int. J. Hum.-Comput. Stud. 70(10). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. Ffitts law: Modeling finger touch with Fitts' law. In Proc. CHI '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Rachel Blagojevic, Samuel Hsiao-Heng Chang, and Beryl Plimmer. 2010. The power of automatic feature selection: Rubine on steroids. In Proc. SBIM '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Xiang Cao and Shumin Zhai. 2007. Modeling human performance of pen stroke gestures. In Proc. CHI '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Stuart K. Card, Thomas P. Moran, and Allen Newell. 1980. The keystroke-level model for user performance time with interactive systems. Commun. ACM 23(1). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Steven J. Castellucci and I. Scott MacKenzie. 2008. Graffiti vs. Unistrokes: An empirical comparison. In Proc. CHI '08. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Xiang Anthony Chen, Julia Schwarz, Chris Harrison, Jennifer Mankoff, and Scott E. Hudson. 2014. Air+touch: Interweaving touch & in-air gestures. In Proc. UIST '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Moussa Djioua and Réjean Plamondon. 2009. Studying the variability of handwriting patterns using the Kinematic Theory. Hum. Mov. Sci. 28(5).Google ScholarGoogle Scholar
  17. Paul M. Fitts. 1954. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47(6).Google ScholarGoogle ScholarCross RefCross Ref
  18. Tamar Flash and Neville Hogan. 1985. The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7).Google ScholarGoogle Scholar
  19. Markus Funk, Alireza Sahami, Niels Henze, and Albrecht Schmidt. 2014. Using a touch-sensitive wristband for text entry on smart watches. In Proc. CHI '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Javier Galbally, Réjean Plamondon, Julián Fierrez, and Javier Ortega-García. 2012. Synthetic on-line signature generation. Part II: Experimental validation. Pattern Recogn. 45(7). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Emilien Ghomi, Stéphane Huot, Olivier Bau, Michel Beaudouin-Lafon, and Wendy E. Mackay. 2013. Arpège: Learning multitouch chord gestures vocabularies. In Proc. ITS '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Tovi Grossman, Xiang Anthony Chen, and George Fitzmaurice. 2015. Typing on glasses: Adapting text entry to smart eyewear. In Proc. MobileHCI '15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Chris Harrison, Julia Schwarz, and Scott E. Hudson. 2011. Tapsense: Enhancing finger interaction on touch surfaces. In Proc. UIST '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Florian Heller, Stefan Ivanov, Chat Wacharamanotham, and Jan Borchers. 2014. Fabritouch: Exploring flexible touch input on textiles. In Proc. ISWC '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Uta Hinrichs and Sheelagh Carpendale. 2011. Gestures in the wild: Studying multi-touch gesture sequences on interactive tabletop exhibits. In Proc. CHI '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Poika Isokoski. 2001. Model for unistroke writing time. In Proc. CHI '01. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Shaun K. Kane, Jacob O. Wobbrock, and Richard E. Ladner. 2011. Usable gestures for blind people: Understanding preference and performance. In Proc. CHI '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Per Ola Kristensson and Shumin Zhai. 2004. SHARK<sup>2</sup>: A large vocabulary shorthand writing system for pen-based computers. In Proc. UIST '04. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Luis A. Leiva. 2017. Large-scale user perception of synthetic stroke gestures. In Proc. DIS '17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Luis A. Leiva, Daniel Martín-Albo, and Réjean Plamondon. 2016. Gestures à Go Go: Authoring synthetic human-like stroke gestures using the kinematic theory of rapid movements. ACM T. Intel. Syst. Tec. 7(2). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Luis A. Leiva, Daniel Martín-Albo, and Réjean Plamondon. 2017a. The Kinematic Theory produces human-like stroke gestures. Interact. Comput. 29(4).Google ScholarGoogle Scholar
  32. Luis A. Leiva, Daniel Martín-Albo, Réjean Plamondon, and Radu-Daniel Vatavu. 2018. KeyTime: Super-accurate prediction of stroke gesture production times. In Proc. CHI '18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Luis A. Leiva, Daniel Martín-Albo, and Radu-Daniel Vatavu. 2017b. Synthesizing stroke gestures across user populations: A case for users with visual impairments. In Proc. CHI '17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yang Li. 2010. Gesture Search: A tool for fast mobile data access. In Proc. UIST '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Hao Lü and Yang Li. 2011. Gesture avatar: A technique for operating mobile user interfaces using gestures. In Proc. CHI '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yuexing Luo and Daniel Vogel. 2015. Pin-and-cross: A unimanual multitouch technique combining static touches with crossing selection. In Proc. UIST '15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Daniel Martín-Albo and Luis A. Leiva. 2016. G3: bootstrapping stroke gestures design with synthetic samples and built-in recognizers. In Proc. MobileHCI '16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Daniel Martín-Albo, Réjean Plamondon, and Enrique Vidal. 2014. Training of on-line handwriting text recognizers with synthetic text generated using the Kinematic Theory of rapid human movements. In Proc. ICFHR '14.Google ScholarGoogle ScholarCross RefCross Ref
  39. Daniel Martín-Albo, Réjean Plamondon, and Enrique Vidal. 2015. Improving sigma-lognormal parameter extraction. In Proc. ICDAR '15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Fabrice Matulic, Daniel Vogel, and Raimund Dachselt. 2017. Hand contact shape recognition for posture-based tabletop widgets and interaction. In Proc. ISS '17. 3--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Meredith Ringel Morris, Annuska Zolyomi, Catherine Yao, Sina Bahram, Jeffrey P. Bigham, and Shaun K. Kane. 2016. "with most of it being pictures now, i rarely use it": Understanding twitter's evolving accessibility to blind users. In Proc. CHI '16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jörg Müller, Antti Oulasvirta, and Roderick Murray-Smith. 2017. Control theoretic models of pointing. ACM Trans. Comput.-Hum. Interact. 24(4). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Miguel A. Nacenta, Yemliha Kamber, Yizhou Qiang, and Per Ola Kristensson. 2013. Memorability of pre-designed and user-defined gesture sets. In Proc. CHI '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Réjean Plamondon. 1995a. A kinematic theory of rapid human movements. Part I: Movement representation and control. Biol. Cybern. 72(4). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Réjean Plamondon. 1995b. A kinematic theory of rapid human movements. Part II: Movement time and control. Biol. Cybern. 72(4). Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Réjean Plamondon, Adel M. Alimi, Pierre Yergeau, and Franck Leclerc. 1993. Modelling velocity profiles of rapid movements: a comparative study. Biol. Cybern. 69(1). Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Réjean Plamondon and Moussa Djioua. 2006. A multi-level representation paradigm for handwriting stroke generation. Hum. Mov. Sci. 25(4--5).Google ScholarGoogle Scholar
  48. Benjamin Poppinga, Alireza Sahami Shirazi, Niels Henze, Wilko Heuten, and Susanne Boll. 2014. Understanding shortcut gestures on mobile touch devices. In Proc. MobileHCI '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Philip Quinn and Shumin Zhai. 2018. Modeling gesture-typing movements. Hum.-Comput. Interact. 33(2).Google ScholarGoogle Scholar
  50. Yosra Rekik, Laurent Grisoni, and Nicolas Roussel. 2013. Towards many gestures to one command: A user study for tabletops. In Proc. INTERACT '13.Google ScholarGoogle ScholarCross RefCross Ref
  51. Yosra Rekik, Radu-Daniel Vatavu, and Laurent Grisoni. 2014a. Match-up & conquer: A two-step technique for recognizing unconstrained bimanual and multi-finger touch input. In Proc. AVI '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Yosra Rekik, Radu-Daniel Vatavu, and Laurent Grisoni. 2014b. Understanding users' perceived difficulty of multi-touch gesture articulation. In Proc. ICMI '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Yosra Rekik, Radu-Daniel Vatavu, and Laurent Grisoni. 2016. Spontaneous Gesture Production Patterns on Multi-touch Interactive Surfaces. Springer, Cham.Google ScholarGoogle Scholar
  54. Quentin Roy, Sylvain Malacria, Yves Guiard, Eric Lecolinet, and James Eagan. 2013. Augmented letters: Mnemonic gesture-based shortcuts. In Proc. CHI '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Huawei Tu, Xiangshi Ren, and Shumin Zhai. 2012. A comparative evaluation of finger and pen stroke gestures. In Proc. CHI '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Ovidiu-Ciprian Ungurean, Radu-Daniel Vatavu, Luis A. Leiva, and Réjean Plamondon. 2018. Gesture input for users with motor impairments on touchscreens: Empirical results based on the kinematic theory. In Proc. CHI EA '18. Article LBW537, 6 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Radu-Daniel Vatavu. 2017. Improving gesture recognition accuracy on touch screens for users with low vision. In Proc. CHI '17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2013. Relative accuracy measures for stroke gestures. In Proc. ICMI '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2014. Gesture heatmaps: Understanding gesture performance with colorful visualizations. In Proc. ICMI '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Radu-Daniel Vatavu, Gabriel Cramariuc, and Doina Maria Schipor. 2015. Touch interaction for children aged 3 to 6 years: Experimental findings and relationship to motor skills. Int. J. Hum.-Comput. Stud. 74(1). Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Radu-Daniel Vatavu, Daniel Vogel, Géry Casiez, and Laurent Grisoni. 2011. Estimating the perceived difficulty of pen gestures. In Proc. INTERACT '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Paolo Viviani and Tamar Flash. 1995. Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J. Exp. Psychol. 21(1).Google ScholarGoogle Scholar
  63. Paolo Viviani and Carlo Terzuolo. 1982. Trajectory determines movement dynamics. Neuroscience 7(2).Google ScholarGoogle Scholar
  64. Rand Wilcox. 2012. Modern Statistics for the Social and Behavioral Sciences. Taylor & Francis Group, LLC, Boca Raton, FL, USA.Google ScholarGoogle Scholar
  65. D. Willems, R. Niels, M. van Gerven, and L. Vuurpijl. 2009. Iconic and multi-stroke gesture recognition. Pattern Recogn. 42(12). Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Jacob O. Wobbrock, Edward Cutrell, Susumu Harada, and I. Scott MacKenzie. 2008. An error model for pointing based on fitts' law. In Proc. CHI '08. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Jacob O. Wobbrock, Brad A. Myers, and John A. Kembel. 2003. Edgewrite: A stylus-based text entry method designed for high accuracy and stability of motion. In Proc. UIST '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Shaomei Wu and Lada A. Adamic. 2014. Visually impaired users on an online social network. In Proc. CHI '14. 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Shumin Zhai and Per Ola Kristensson. 2012. The word-gesture keyboard: Reimagining keyboard interaction. Commun. ACM 55(9). Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Shumi Zhai, Per Ola Kristensson, Caroline Appert, Tue H. Anderson, and Xiang Cao. 2012. Foundational issues in touch-surface stroke gesture design --- an integrative review. In Foundations and Trends in Human-Computer Interaction. Vol. 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Chi Zhang, Nan Jiang, and Feng Tian. 2016. Accessing mobile apps with user defined gesture shortcuts: An exploratory study. In Proc. ISS '16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  1. GATO: predicting human performance with multistroke and multitouch gesture input

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MobileHCI '18: Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services
      September 2018
      552 pages
      ISBN:9781450358989
      DOI:10.1145/3229434

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 3 September 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate202of906submissions,22%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader