skip to main content
10.1145/3230543.3230564acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access
Artifacts Available

Homa: a receiver-driven low-latency transport protocol using network priorities

Published:07 August 2018Publication History

ABSTRACT

Homa is a new transport protocol for datacenter networks. It provides exceptionally low latency, especially for workloads with a high volume of very short messages, and it also supports large messages and high network utilization. Homa uses in-network priority queues to ensure low latency for short messages; priority allocation is managed dynamically by each receiver and integrated with a receiver-driven flow control mechanism. Homa also uses controlled overcommitment of receiver downlinks to ensure efficient bandwidth utilization at high load. Our implementation of Homa delivers 99th percentile round-trip times less than 15 μs for short messages on a 10 Gbps network running at 80% load. These latencies are almost 100x lower than the best published measurements of an implementation. In simulations, Homa's latency is roughly equal to pFabric and significantly better than pHost, PIAS, and NDP for almost all message sizes and workloads. Homa can also sustain higher network loads than pFabric, pHost, or PIAS.

References

  1. M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese. CONGA: Distributed Congestion-aware Load Balancing for Datacenters. In Proceedings of the ACM SIGCOMM 2014 Conference, SIGCOMM '14, pages 503--514, New York, NY, USA, 2014. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM '10, pages 63--74, New York, NY, USA, 2010. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is More: Trading a Little Bandwidth for Ultra-low Latency in the Data Center. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, NSDI'12, pages 19--19, Berkeley, CA, USA, 2012. USENIX Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. pFabric: Minimal Near-optimal Datacenter Transport. In Proceedings of the ACM SIGCOMM 2013 Conference, SIGCOMM '13, pages 435--446, New York, NY, USA, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload Analysis of a Large-scale Key-value Store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS '12, pages 53--64, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. Information-agnostic Flow Scheduling for Commodity Data Centers. In Proceedings of the 12th USENIX Conference on Networked Systems Design and Implementation, NSDI'15, pages 455--468, Berkeley, CA, USA, 2015. USENIX Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. Chen, K. Chen, W. Bai, and M. Alizadeh. Scheduling Mix-flows in Commodity Datacenters with Karuna. In Proceedings of the ACM SIGCOMM 2016 Conference, SIGCOMM '16, pages 174--187, New York, NY, USA, 2016. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. I. Cho, K. Jang, and D. Han. Credit-Scheduled Delay-Bounded Congestion Control for Datacenters. In Proceedings of the ACM SIGCOMM 2017 Conference, SIGCOMM '17, pages 239--252, New York, NY, USA, 2017. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Data Plane Development Kit. http://dpdk.org/.Google ScholarGoogle Scholar
  10. A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the Impact of Packet Spraying in Data Center Networks. In Proceedings of IEEE Infocom, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast Remote Memory. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), pages 401--414, Seattle, WA, Apr. 2014. USENIX Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. B. Felderman. Personal communication, February 2018. Google.Google ScholarGoogle Scholar
  13. P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S. Shenker. pHost: Distributed Near-optimal Datacenter Transport over Commodity Network Fabric. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT '15, pages 1:1--1:12, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W. Moore, S. Hand, and J. Crowcroft. Queues Don't Matter When You Can JUMP Them! In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), pages 1--14, Oakland, CA, 2015. USENIX Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichik, and M. Mojcik. Re-architecting Datacenter Networks and Stacks for Low Latency and High Performance. In Proceedings of the ACM SIGCOMM 2017 Conference, SIGCOMM '17, pages 29--42, New York, NY, USA, 2017. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella. Presto: Edge-based Load Balancing for Fast Datacenter Networks. In Proceedings of the ACM SIGCOMM 2015 Conference, SIGCOMM '15, pages 465--478, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly with Preemptive Scheduling. In Proceedings of the ACM SIGCOMM 2012 Conference, SIGCOMM '12, pages 127--138, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park. mTCP: a Highly Scalable User-level TCP Stackfor Multicore Systems. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), pages 489--502, Seattle, WA, 2014. USENIX Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. C. Lee, S. J. Park, A. Kejriwal, S. Matsushita, and J. Ousterhout. Implementing Linearizability at Large Scale and Low Latency. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP '15, pages 71--86, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. memcached: a Distributed Memory Object Caching System. http://www.memcached.org/, Jan. 2011.Google ScholarGoogle Scholar
  21. R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. TIMELY: RTT-based Congestion Control for the Datacenter. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM '15, pages 537--550, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. B. Montazeri, Y. Li, M. Alizadeh, and J. K. Ousterhout. Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Priorities (Complete Version). CoRR, http://arxiv.org/abs/1803.09615, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling Memcache at Facebook. In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), pages 385--398, Lombard, IL, 2013. USENIX. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, et al. The RAMCloud Storage System. ACM Transactions on Computer Systems (TOCS), 33(3):7,2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass: A Centralized "Zero-queue" Datacenter Network. In Proceedings of the ACM SIGCOMM 2014 Conference, SIGCOMM '14, pages 307--318, New York, NY, USA, 2014. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Redis, Mar. 2015. http://redis.io.Google ScholarGoogle Scholar
  27. A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the Social Network's (Datacenter) Network. In Proceedings of the ACM SIGCOMM 2015 Conference, SIGCOMM '15, pages 123--137, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Shanley. Infiniband Network Architecture. Addison-Wesley Professional, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Sivaram. Some Measured Google Flow Sizes (2008). Google internal memo, available on request.Google ScholarGoogle Scholar
  30. BCM56960 Series: High-Density 25/100 Gigabit Ethernet StrataXGS Tomahawk Ethernet Switch Series. https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56960-series.Google ScholarGoogle Scholar
  31. B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware Datacenter TCP (D2TCP). In Proceedings of the ACM SIGCOMM 2012 Conference, SIGCOMM '12, pages 115--126, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better Never Than Late: Meeting Deadlines in Datacenter Networks. In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM '11, pages 50--61, New York, NY, USA, 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. Detail: Reducing the flow completion time tail in datacenter networks. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM '12, pages 139--150, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang. Congestion Control for Large-Scale RDMA Deployments. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM '15, pages 523--536, New York, NY, USA, 2015. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Homa: a receiver-driven low-latency transport protocol using network priorities

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGCOMM '18: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication
        August 2018
        604 pages
        ISBN:9781450355674
        DOI:10.1145/3230543

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 August 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate554of3,547submissions,16%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader