skip to main content
10.1145/3231622.3231639acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvinciConference Proceedingsconference-collections
research-article

3D Modelling and Visualisation of Heterogeneous Cell Membranes in Blender

Authors Info & Claims
Published:13 August 2018Publication History

ABSTRACT

Chlamydomonas reinhardtii cells have been in the focus of research for more than a decade, in particular due to its use as alternative source for energy production. However, the molecular processes in these cells are still not completely known, and 3D visualisations may help to understand these complex interactions and processes. In previous work, we presented the stereoscopic 3D (S3D) visualisation of a complete Chlamydomonas reinhardtii cell created with the 3D modelling framework Blender. This animation contained already a scene showing an illustrative membrane model of the thylakoid membrane. During discussion with domain experts, shortcomings of the visualisation for several detailed analysis questions have been identified and it was decided to redefine it.

A new modelling and visualisation pipeline based on a Membrane Packing Algorithm was developed, which can be configured via a user interface, enabling the composition of membranes employing published material. An expert user study was conducted to evaluate this new approach, with half the participants having a biology and the other half having an informatics background. The new and old Chlamydomonas thylakoid membrane models were presented on a S3D back projection system. The evaluation results reveal that the majority of participants preferred the new, more realistic membrane visualisation. However, the opinion varied with the expertise, leading to valuable conclusions for future visualisations. Interestingly, the S3D presentation of molecular structures lead to a positive change in opinion regarding S3D technology.

References

  1. 2001. 1jb0 - Photosystem I of cyanobacteria - Orientations of Proteins in Membranes (OPM) database. http://opm.phar.umich.edu/protein.php?search=1jb0Google ScholarGoogle Scholar
  2. 2004. 1rwt- Light-Harvesting Complex II- Orientations of Proteins in Membranes (OPM) database. http://opm.phar.umich.edu/protein.php?search=1rwtGoogle ScholarGoogle Scholar
  3. 2014. 2014-09-21 | 4th Int. CeBiTec Research Conference Bielefeld. http://www.webcitation.org/6xjDvOwr2Google ScholarGoogle Scholar
  4. 2017. AlgaeTEM - 6/17: Chlamydomonas#80501. http://remf.dartmouth.edu/images/algaeTEM/source/6.htmlGoogle ScholarGoogle Scholar
  5. 2017. Avanti Polar Lipids, Inc. https://avantilipids.comGoogle ScholarGoogle Scholar
  6. 2017. Jmol: an open-source browser-based HTML5 viewer and stand-alone Java viewer for chemical structures in 3D. http://jmol.sourceforge.net/Google ScholarGoogle Scholar
  7. 2017. MCell Home. http://www.mcell.org/Google ScholarGoogle Scholar
  8. 2017. Stereoscopic Displays and Applications conference - 3D Theatre Session. http://stereoscopic.org/3dcinema/index.htmlGoogle ScholarGoogle Scholar
  9. 2018. CELLmicrocosmos.org - project. http://cellmicrocosmos.orgGoogle ScholarGoogle Scholar
  10. N. Biere, M. Ghaffar, A. Doebbe, D. Jäger, N. Rothe, R. Klein K, Hofestädt, F. Schreiber, O. Kruse, and B. Sommer. 2018 in print. Heuristic modeling and 3D stereoscopic visualization of a Chlamydomonas reinhardtii cell. Journal of Integrative Bioinformatics 2, 15 (2018 in print), e53293.Google ScholarGoogle Scholar
  11. Christian Bogen, Viktor Klassen, Julian Wichmann, Marco La Russa, Anja Doebbe, Michael Grundmann, Pauliina Uronen, Olaf Kruse, and Jan H. Mussgnug. 2013. Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Biores. Techn. 133 (2013), 622--626.Google ScholarGoogle ScholarCross RefCross Ref
  12. Yusuf Chisti. 2007. Biodiesel from microalgae. Biotechnology advances 25, 3 (2007), 294--306.Google ScholarGoogle Scholar
  13. Sébastien Doutreligne, Tristan Cragnolini, Samuela Pasquali, Philippe Derreumaux, and Marc Baaden. 2014. UnityMol: interactive scientific visualization for integrative biology. In Large Data Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium on. IEEE, 109--110.Google ScholarGoogle ScholarCross RefCross Ref
  14. Blender Foundation. 2017. blender.org - Home of the Blender project - Free and Open 3D Creation Software. blender.org (2017). https://www.blender.org/Google ScholarGoogle Scholar
  15. Paul Green-Armytage. 2010. A colour alphabet and the limits of colour coding. JAIC - Journal of the International Colour Association 5 (2010), 1--12.Google ScholarGoogle Scholar
  16. Sebastian Grottel, Michael Krone, Christoph Müller, Guido Reina, and Thomas Ertl. 2015. MegaMol - a prototyping framework for particle-based visualization. IEEE Trans. Visualization and Computer Graphics 21, 2 (2015), 201--214.Google ScholarGoogle ScholarCross RefCross Ref
  17. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. 2008. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput 4, 3 (2008), 435--447.Google ScholarGoogle ScholarCross RefCross Ref
  18. E. Hummel, P. Guttmann, S. Werner, B. Tarek, G. Schneider, M. Kunz, A. S. Frangakis, and B. Westermann. 2012. 3D ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography. PloS One 7, 12 (2012), e53293.Google ScholarGoogle ScholarCross RefCross Ref
  19. S. Jo, J. Lim, J. Klauda, and W. Im. 2009. CHARMM-GUI Membrane Builder for Mixed Bilayers and its Application to Yeast Membranes. Biophysical Journal 97, 1 (2009), 50--58.Google ScholarGoogle ScholarCross RefCross Ref
  20. G. Johnson, D. Goodsell, L. Autin, S. Forli, M. Sanner, and A. Olson. 2014. 3D molecular models of whole HIV-1 virions generated with cellPACK. Faraday Discussions 169 (2014), 1--21.Google ScholarGoogle ScholarCross RefCross Ref
  21. G. T. Johnson, L. Autin, D. S. Goodsell, M. F. Sanner, and A. J. Olson. 2011. ePMV Embeds Molecular Modeling into Professional Animation Software Environments. Structure 19, 3 (2011), 293--303.Google ScholarGoogle ScholarCross RefCross Ref
  22. Rex A. Kerr, Thomas M. Bartol, Boris Kaminsky, Markus Dittrich, Jen-Chien Jack Chang, Scott B. Baden, Terrence J. Sejnowski, and Joel R. Stiles. 2008. Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM journal on scientific computing 30, 6 (2008), 3126--3149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Klein, L. Autin, B. Kozliková, D. S. Goodsell, A. Olson, M. E. Gröller, and I. Viola. 2017. Instant construction and visualization of crowded biological environments. IEEE Trans. Visualization and Computer Graphics (2017).Google ScholarGoogle Scholar
  24. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, and A. L. Lomize. 2012. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Research 40, D1 (2012), D370--D376.Google ScholarGoogle ScholarCross RefCross Ref
  25. L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez. 2009. Packmol: a package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry 30, 13 (2009), 2157--2164.Google ScholarGoogle ScholarCross RefCross Ref
  26. Teresa M. Mata, Antonio A. Martins, and Nidia S. Caetano. 2010. Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews 14, 1 (2010), 217--232.Google ScholarGoogle Scholar
  27. L. Mendiola-Morgenthaler, W. Eichenberger, and A. Boschetti. 1985. Isolation of chloroplast envelopes from Chlamydomonas. Lipid and polypeptide composition. Plant Science 41, 2 (Oct. 1985), 97--104.Google ScholarGoogle ScholarCross RefCross Ref
  28. The Presidents and Fellows of Harvard College. 2007. BioVisions: the Inner Life of the Cell. http://web.archive.org/web/20081215222914/http://multimedia.mcb.harvard.edu/Google ScholarGoogle Scholar
  29. Nivedita Rajendiran and Jacob D. Durrant. 2017. Pyrite: a blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques. Journal of Computational Chemistry (2017).Google ScholarGoogle Scholar
  30. Mark A. Scaife, Alexandra Merkx-Jacques, David L. Woodhall, and Roberto E. Armenta. 2015. Algal biofuels in Canada: Status and potential. Renewable and Sustainable Energy Reviews 44 (2015), 620--642.Google ScholarGoogle ScholarCross RefCross Ref
  31. John Sheehan, Terri Dunahay, John Benemann, and Paul Roessler. 1998. Look back at the US department of energy's aquatic species program: biodiesel from algae; close-out report. Technical Report. National Renewable Energy Lab., Golden, CO.(US).Google ScholarGoogle Scholar
  32. S. J. Singer and G. L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes. Science 175, 23 (1972), 720--731.Google ScholarGoogle ScholarCross RefCross Ref
  33. Björn Sommer. 2013. Membrane Packing Problems: A short Review on computational Membrane Modeling Methods and Tools. Computational and Structural Biotechnology Journal 5, 6 (2013), e201302014.Google ScholarGoogle ScholarCross RefCross Ref
  34. B. Sommer, C. Bender, T. Hoppe, C. Gamroth, and L. Jelonek. 2014. Stereoscopic cell visualization: from mesoscopic to molecular scale. Electronic Imaging, Proceedings of Stereoscopic Displays and Applications XXVIII 23, 1 (2014), 011007.1--10.Google ScholarGoogle Scholar
  35. B. Sommer, T. Dingersen, C. Gamroth, S. E. Schneider, S. Rubert, J. Krüger, and K. J. Dietz. 2011. CELLmicrocosmos 2.2 MembraneEditor: a modular interactive shape-based software approach to solve heterogeneous Membrane Packing Problems. Journal of Chemical Information and Modeling 5, 51 (2011), 1165--1182.Google ScholarGoogle ScholarCross RefCross Ref
  36. B. Sommer, B. Kormeier, P. S. Demenkov, P. Arrigo, K. Hippe, Ö. Ates, A. V. Kochetov, V. A. Ivanisenko, N. A. Kolchanov, and R. Hofestädt. 2013. Subcellular Localization Charts: A new visual methodology for the semi-automatic localization of protein-related data sets. Journal of Bioinformatics and Computational Biology 11, 1 (2013), 1340005.Google ScholarGoogle ScholarCross RefCross Ref
  37. M. F. Zini, Y. Porozov, R. M. Andrei, T. Loni, C. Caudai, and M. ZoppÃĺ. 2010. BioBlender: fast and efficient all atom morphing of proteins using Blender game engine. Arxiv preprint arXiv:1009.4801 (2010).Google ScholarGoogle Scholar

Index Terms

  1. 3D Modelling and Visualisation of Heterogeneous Cell Membranes in Blender

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        VINCI '18: Proceedings of the 11th International Symposium on Visual Information Communication and Interaction
        August 2018
        135 pages
        ISBN:9781450365017
        DOI:10.1145/3231622

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 August 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate71of193submissions,37%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader