skip to main content
research-article

Direct delta mush skinning and variants

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

A significant fraction of the world's population have experienced virtual characters through games and movies, and the possibility of online VR social experiences may greatly extend this audience. At present, the skin deformation for interactive and real-time characters is typically computed using geometric skinning methods. These methods are efficient and simple to implement, but obtaining quality results requires considerable manual "rigging" effort involving trial-and-error weight painting, the addition of virtual helper bones, etc. The recently introduced Delta Mush algorithm largely solves this rig authoring problem, but its iterative computational approach has prevented direct adoption in real-time engines.

This paper introduces Direct Delta Mush, a new algorithm that simultaneously improves on the efficiency and control of Delta Mush while generalizing previous algorithms. Specifically, we derive a direct rather than iterative algorithm that has the same ballpark computational form as some previous geometric weight blending algorithms. Straightforward variants of the algorithm are then proposed to further optimize computational and storage cost with insignificant quality losses. These variants are equivalent to special cases of several previous skinning algorithms.

Our algorithm simultaneously satisfies the goals of reasonable efficiency, quality, and ease of authoring. Further, its explicit decomposition of rotational and translational effects allows independent control over bending versus twisting deformation, as well as a skin sliding effect.

Skip Supplemental Material Section

Supplemental Material

a113-le.mp4
papers_284.mp4

References

  1. Marc Alexa. 2002. Linear Combination of Transformations. ACM Trans. Graph. 21, 3 (July 2002), 380--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis. 2005. SCAPE: Shape Completion and Animation of People. ACM Trans. Graph. 24, 3 (July 2005), 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ilya Baran and Jovan Popović. 2007. Automatic Rigging and Animation of 3D Characters. ACM Trans. Graph. 26, 3, Article 72 (July 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-reduced Projective Dynamics. ACM Trans. Graph. 37, 4, Article 80 (July 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dimitar Dinev, Tiantian Liu, Jing Li, Bernhard Thomaszewski, and Ladislav Kavan. 2018. FEPR: Fast Energy Projection for Real-time Simulation of Deformable Objects. ACM Trans. Graph. 37, 4, Article 79 (July 2018), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Richard Everson. 1997. Orthogonal, but not Orthonormal, Procrustes Problems. In Advances in Computational Mathematics.Google ScholarGoogle Scholar
  9. Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. 2008. Real-time Data Driven Deformation Using Kernel Canonical Correlation Analysis. ACM Trans. Graph. 27, 3, Article 91 (Aug. 2008), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Lin Gao, Yu-Kun Lai, Dun Liang, Shu-Yu Chen, and Shihong Xia. 2016. Efficient and Flexible Deformation Representation for Data-Driven Surface Modeling. ACM Trans. Graph. 35, 5, Article 158 (July 2016), 17 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros, and Markus Gross. 2012. Rig-space Physics. ACM Trans. Graph. 31, 4, Article 72 (July 2012), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, and Markus Gross. 2013. Efficient Simulation of Secondary Motion in Rig-space. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 165--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Alexandru-Eugen Ichim, Petr Kadleček, Ladislav Kavan, and Mark Pauly. 2017. Phace: Physics-based Face Modeling and Animation. ACM Trans. Graph. 36, 4, Article 153 (July 2017), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012a. Fast Automatic Skinning Transformations. ACM Trans. Graph. 31, 4, Article 77 (July 2012), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic Weights for Real-time Deformation. ACM Trans. Graph. 30, 4, Article 78 (July 2011), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Alec Jacobson and Olga Sorkine. 2011. Stretchable and Twistable Bones for Skeletal Shape Deformation. ACM Trans. Graph. 30, 6, Article 165 (Dec. 2011), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Alec Jacobson, Tino Weinkauf, and Olga Sorkine. 2012b. Smooth Shape-Aware Functions with Controlled Extrema. Comput. Graph. Forum 31, 5 (Aug. 2012), 1577--1586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Doug L. James and Christopher D. Twigg. 2005. Skinning Mesh Animations. ACM Trans. Graph. 24, 3 (July 2005), 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ben Jones, Nils Thuerey, Tamar Shinar, and Adam W. Bargteil. 2016. Example-based Plastic Deformation of Rigid Bodies. ACM Trans. Graph. 35, 4, Article 34 (July 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic Coordinates for Character Articulation. ACM Trans. Graph. 26, 3, Article 71 (July 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean Value Coordinates for Closed Triangular Meshes. ACM Trans. Graph. 24, 3 (July 2005), 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. W. Kabsch. 1978. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 34 (1978), 827--828.Google ScholarGoogle ScholarCross RefCross Ref
  23. Petr Kadleček, Alexandru-Eugen Ichim, Tiantian Liu, Jaroslav Křivánek, and Ladislav Kavan. 2016. Reconstructing Personalized Anatomical Models for Physics-based Body Animation. ACM Trans. Graph. 35, 6, Article 213 (Nov. 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O'Sullivan. 2008. Geometric Skinning with Approximate Dual Quaternion Blending. ACM Trans. Graph. 27, 4, Article 105 (Nov. 2008), 23 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ladislav Kavan and Olga Sorkine. 2012. Elasticity-inspired Deformers for Character Articulation. ACM Trans. Graph. 31, 6, Article 196 (Nov. 2012), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ladislav Kavan and Jiří Žára. 2005. Spherical Blend Skinning: A Real-time Deformation of Articulated Models. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games (I3D '05). ACM, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Paul G. Kry, Doug L. James, and Dinesh K. Pai. 2002. EigenSkin: Real Time Large Deformation Character Skinning in Hardware. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '02). ACM, New York, NY, USA, 153--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Binh Huy Le and Zhigang Deng. 2012. Smooth Skinning Decomposition with Rigid Bones. ACM Trans. Graph. 31, 6, Article 199 (Nov. 2012), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Binh Huy Le and Zhigang Deng. 2014. Robust and Accurate Skeletal Rigging from Mesh Sequences. ACM Trans. Graph. 33, 4, Article 84 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Binh Huy Le and Jessica K. Hodgins. 2016. Real-time Skeletal Skinning with Optimized Centers of Rotation. ACM Trans. Graph. 35, 4, Article 37 (July 2016), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-driven Deformation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Duo Li, Shinjiro Sueda, Debanga R. Neog, and Dinesh K. Pai. 2013. Thin Skin Elastodynamics. ACM Trans. Graph. 32, 4, Article 49 (July 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green Coordinates. ACM Trans. Graph. 27, 3, Article 78 (Aug. 2008), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation and Control of Skeleton-driven Soft Body Characters. ACM Trans. Graph. 32, 6, Article 215 (Nov. 2013), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 3, Article 116a (May 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Matthew Loper, Naureen Mahmood, and Michael J. Black. 2014. MoSh: Motion and Shape Capture from Sparse Markers. ACM Trans. Graph. 33, 6, Article 220 (Nov. 2014), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. 2015. SMPL: A Skinned Multi-person Linear Model. ACM Trans. Graph. 34, 6, Article 248 (Oct. 2015), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. N. Magnenat-Thalmann, F. Cordier, Hyewon Seo, and G. Papagianakis. 2004. Modeling of bodies and clothes for virtual environments. In International Conference on Cyberworlds 2004. 201--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. 1988. Joint-dependent Local Deformations for Hand Animation and Object Grasping. In Proceedings on Graphics Interface '88. Canadian Information Processing Society, Toronto, Ont., Canada, Canada, 26--33. http://dl.acm.org/citation.cfm?id=102313.102317 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Joe Mancewicz, Matt L. Derksen, Hans Rijpkema, and Cyrus A. Wilson. 2014. Delta Mush: Smoothing Deformations While Preserving Detail. In Proceedings of the Fourth Symposium on Digital Production (DigiPro '14). ACM, New York, NY, USA, 7--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011. Efficient Elasticity for Character Skinning with Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (July 2011), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Bruce Merry, Patrick Marais, and James Gain. 2006. Animation Space: A Truly Linear Framework for Character Animation. ACM Trans. Graph. 25, 4 (Oct. 2006), 1400--1423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Tomohiko Mukai. 2015. Building Helper Bone Rigs from Examples. In Proceedings of the 19th ACM Symposium on Interactive 3D Graphics and Games. 77--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tomohiko Mukai and Shigeru Kuriyama. 2016. Efficient Dynamic Skinning with Low-rank Helper Bone Controllers. ACM Trans. Graph. 35, 4, Article 36 (July 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sang Il Park and Jessica K. Hodgins. 2008. Data-driven Modeling of Skin and Muscle Deformation. ACM Trans. Graph. 27, 3, Article 96 (Aug. 2008), 6 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Olivier Rémillard and Paul G. Kry. 2013. Embedded Thin Shells for Wrinkle Simulation. ACM Trans. Graph. 32, 4, Article 50 (July 2013), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Shunsuke Saito, Zi-Ye Zhou, and Ladislav Kavan. 2015. Computational Bodybuilding: Anatomically-based Modeling of Human Bodies. ACM Trans. Graph. 34, 4, Article 41 (July 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Jaewoo Seo, Geoffrey Irving, J. P. Lewis, and Junyong Noh. 2011. Compression and Direct Manipulation of Complex Blendshape Models. ACM Trans. Graph. 30, 6, Article 164 (Dec. 2011), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Peter-Pike J. Sloan, Charles F. Rose, III, and Michael F. Cohen. 2001. Shape by Example. In Proceedings of the 2001 ACM Symposium on Interactive 3D Graphics. 135--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2, Article 12 (March 2018), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible Surface Modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing. 109--116. http://dl.acm.org/citation.cfm?id=1281991.1282006 Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Accurate and Efficient Lighting for Skinned Models. Computer Graphics Forum (proceedings of EUROGRAPHICS issue) 33, 2 (2014), 421--428. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Rodolphe Vaillant, Loïc Barthe, Gaël Guennebaud, Marie-Paule Cani, Damien Rohmer, Brian Wyvill, Olivier Gourmel, and Mathias Paulin. 2013. Implicit Skinning: Real-time Skin Deformation with Contact Modeling. ACM Trans. Graph. 32, 4, Article 125 (July 2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Rodolphe Vaillant, Gäel Guennebaud, Loïc Barthe, Brian Wyvill, and Marie-Paule Cani. 2014. Robust Iso-surface Tracking for Interactive Character Skinning. ACM Trans. Graph. 33, 6, Article 189 (Nov. 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. G. Wahba. 1965. A Least Squares Estimate of Satellite Attitude. SIAM Rev. 7, 3 (1965), 409--409.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Robert Y. Wang, Kari Pulli, and Jovan Popović. 2007. Real-time Enveloping with Rotational Regression. ACM Trans. Graph. 26, 3, Article 73 (July 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Xiaohuan Corina Wang and Cary Phillips. 2002. Multi-weight Enveloping: Least-squares Approximation Techniques for Skin Animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear Subspace Design for Real-time Shape Deformation. ACM Trans. Graph. 34, 4, Article 57 (July 2015), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Hongyi Xu and Jernej Barbič. 2016. Pose-space Subspace Dynamics. ACM Trans. Graph. 35, 4, Article 35 (July 2016), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Direct delta mush skinning and variants

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader