skip to main content
research-article

Central Limit Model Checking

Authors Info & Claims
Published:16 July 2019Publication History
Skip Abstract Section

Abstract

We consider probabilistic model checking for continuous-time Markov chains (CTMCs) induced from Stochastic Reaction Networks against a fragment of Continuous Stochastic Logic (CSL) extended with reward operators. Classical numerical algorithms for CSL model checking based on uniformisation are limited to finite CTMCs and suffer from exponential growth of the state space with respect to the number of species. However, approximate techniques such as mean-field approximations and simulations combined with statistical inference are more scalable but can be time-consuming and do not support the full expressiveness of CSL. In this article, we employ a continuous-space approximation of the CTMC in terms of a Gaussian process based on the Central Limit Approximation, also known as the Linear Noise Approximation, whose solution requires solving a number of differential equations that is quadratic in the number of species and independent of the population size. We then develop efficient and scalable approximate model checking algorithms on the resulting Gaussian process, where we restrict the target regions for probabilistic reachability to convex polytopes. This allows us to derive an abstraction in terms of a time-inhomogeneous discrete-time Markov chain (DTMC), whose dimension is independent of the number of species, on which model checking is performed. Using results from probability theory, we prove the convergence in distribution of our algorithms to the corresponding measures on the original CTMC. We implement the techniques and, on a set of examples, demonstrate that they allow us to overcome the state space explosion problem, while still correctly characterizing the stochastic behaviour of the system. Our methods can be used for formal analysis of a wide range of distributed stochastic systems, including biochemical systems, sensor networks, and population protocols.

References

  1. Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Prandini. 2010. Approximate model checking of stochastic hybrid systems. Eur. J. Contr. 16, 6 (2010), 624--641.Google ScholarGoogle ScholarCross RefCross Ref
  2. Robert J. Adler. 2010. The Geometry of Random Fields. SIAM.Google ScholarGoogle Scholar
  3. David F. Anderson and Thomas G. Kurtz. {n.d.}. Stochastic Analysis of Biochemical Systems. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David F. Anderson and Thomas G. Kurtz. 2011. Continuous time Markov chain models for chemical reaction networks. In Design and Analysis of Biomolecular Circuits. Springer, 3--42.Google ScholarGoogle Scholar
  5. Dana Angluin, James Aspnes, and David Eisenstat. 2008. A simple population protocol for fast robust approximate majority. Distrib. Comput. 21, 2 (2008), 87--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. 1996. Verifying continuous time Markov chains. In Computer Aided Verification. Springer, 269--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. 2000. Model-checking continuous-time Markov chains. ACM Trans. Comput. Logic 1, 1 (2000), 162--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen. 2000. Model checking continuous-time Markov chains by transient analysis. In Proceedings of the International Conference on Computer Aided Verification. Springer, 358--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen. 2003. Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29, 6 (2003), 524--541. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Christel Baier, Joost-Pieter Katoen, et al. 2008. Principles of Model Checking. Vol. 26202649. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  11. Dimitir P. Bertsekas and Steven Shreve. 2004. Stochastic Optimal Control: The Discrete-time Case. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Patrick Billingsley. 2013. Convergence of Probability Measures. John Wiley 8 Sons.Google ScholarGoogle Scholar
  13. Luca Bortolussi. 2016. Hybrid behaviour of Markov population models. Inf. Comput. 247 (2016), 37--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Luca Bortolussi, Luca Cardelli, Marta Kwiatkowska, and Luca Laurenti. 2016. Approximation of probabilistic reachability for chemical reaction networks using the linear noise approximation. In Proceedings of the International Conference on Quantitative Evaluation of Systems. Springer, 72--88.Google ScholarGoogle ScholarCross RefCross Ref
  15. Luca Bortolussi and Jane Hillston. 2012. Fluid model checking. In Proceedings of the International Conference on Concurrency Theory (CONCUR’12). Springer, 333--347. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Luca Bortolussi and Jane Hillston. 2015. Efficient checking of individual rewards properties in Markov population models. arXiv preprint arXiv:1509.08561 (2015).Google ScholarGoogle Scholar
  17. Luca Bortolussi, Jane Hillston, Diego Latella, and Mieke Massink. 2013. Continuous approximation of collective system behaviour: A tutorial. Perf. Eval. 70, 5 (2013), 317--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Luca Bortolussi and Roberta Lanciani. 2013. Model checking Markov population models by central limit approximation. In Quantitative Evaluation of Systems. Springer, 123--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Luca Bortolussi and Roberta Lanciani. 2014. Stochastic approximation of global reachability probabilities of Markov population models. In Computer Performance Engineering. Springer, 224--239.Google ScholarGoogle Scholar
  20. Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti. 2016. Smoothed model checking for uncertain continuous-time Markov chains. Information and Computation 247 (2016), 235--253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Luca Cardelli, Milan Češka, Martin Fränzle, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, and Max Whitby. 2017. Syntax-guided optimal synthesis for chemical reaction networks. In Proceedings of the International Conference on Computer Aided Verification. Springer, 375--395.Google ScholarGoogle ScholarCross RefCross Ref
  22. Luca Cardelli and Attila Csikász-Nagy. 2012. The cell cycle switch computes approximate majority. Sci. Rep. 2 (2012), 656.Google ScholarGoogle Scholar
  23. Luca Cardelli, Marta Kwiatkowska, and Luca Laurenti. 2016. Stochastic analysis of chemical reaction networks using linear noise approximation. Biosystems 149 (2016), 26--33.Google ScholarGoogle ScholarCross RefCross Ref
  24. Luca Cardelli, Marta Kwiatkowska, and Luca Laurenti. 2016. A stochastic hybrid approximation for chemical kinetics based on the linear noise approximation. In Proceedings of the International Conference on Computational Methods in Systems Biology. Springer, 147--167.Google ScholarGoogle ScholarCross RefCross Ref
  25. Luca Cardelli, Marta Kwiatkowska, and Luca Laurenti. 2018. Programming discrete distributions with chemical reaction networks. Nat. Comput. 17, 1 (2018), 131--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre. 2009. LTL model checking of time-inhomogeneous Markov chains. In Proceedings of the International Symposium on Automated Technology for Verification and Analysis. Springer, 104--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Federica Ciocchetta and Jane Hillston. 2009. Bio-PEPA: A framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410, 33--34 (2009), 3065--3084. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Frits Dannenberg, Ernst Moritz Hahn, and Marta Kwiatkowska. 2015. Computing cumulative rewards using fast adaptive uniformization. ACM Trans. Model. Comput. Simul. 25, 2, Article 9 (Feb. 2015), 23 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stewart N. Ethier and Thomas G. Kurtz. 2009. Markov Processes: Characterization and Convergence, Vol. 282. John Wiley 8 Sons.Google ScholarGoogle Scholar
  30. N. Gast. 2017. Expected values estimated via mean-field approximation are 1/N-accurate. Proc. ACM Meas. Anal. Comput. Syst. 1, 1 (2017), 17:1--17:26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Daniel T. Gillespie. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 25 (1977), 2340--2361.Google ScholarGoogle ScholarCross RefCross Ref
  32. Daniel T. Gillespie. 1992. A rigorous derivation of the chemical master equation. Physica A 188, 1 (1992), 404--425.Google ScholarGoogle ScholarCross RefCross Ref
  33. Ramon Grima. 2015. Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems. Phys. Rev. E 92, 4 (2015), 042124.Google ScholarGoogle ScholarCross RefCross Ref
  34. J. Hasenauer, V. Wolf, A. Kazeroonian, and F. J. Theis. 2014. Method of conditional moments (MCM) for the chemical master equation. J. Math. Biol. 69, 3 (2014), 687--735.Google ScholarGoogle ScholarCross RefCross Ref
  35. John Heath, Marta Kwiatkowska, Gethin Norman, David Parker, and Oksana Tymchyshyn. 2008. Probabilistic model checking of complex biological pathways. Theor. Comput. Sci. 391, 3 (2008), 239--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Thomas A. Henzinger, Linar Mikeev, Maria Mateescu, and Verena Wolf. 2010. Hybrid numerical solution of the chemical master equation. In Proceedings of the 8th International Conference on Computational Methods in Systems Biology. ACM, 55--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Jane Hillston. 2005. A Compositional Approach to Performance Modelling. Vol. 12. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Richard M. Karp and Raymond E. Miller. 1969. Parallel program schemata. J. Comput. Syst. Sci. 3, 2 (1969), 147--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. Krantz and P. R. Harold. 2002. A Primer of Real Analytic Functions (2nd ed.). Birkáÿauser.Google ScholarGoogle Scholar
  40. Marta Kwiatkowska, Gethin Norman, and David Parker. 2007. Stochastic model checking. In Formal Methods for Performance Evaluation. Springer, 220--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of probabilistic real-time systems. In Computer Aided Verification. Springer, 585--591. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Luca Laurenti, Alessandro Abate, Luca Bortolussi, Luca Cardelli, Milan Ceska, and Marta Kwiatkowska. 2017. Reachability computation for switching diffusions: Finite abstractions with certifiable and tuneable precision. In Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control. ACM, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Luca Laurenti, Attila Csikasz-Nagy, Marta Kwiatkowska, and Luca Cardelli. 2018. Molecular filters for noise reduction. Biophys. J. 114, 12 (2018), 3000--3011.Google ScholarGoogle ScholarCross RefCross Ref
  44. M. A. Lifshits. 1984. Absolute continuity of functionals of “supremum” type for Gaussian processes. J. Math. Sci. 27, 5 (1984), 3103--3112.Google ScholarGoogle ScholarCross RefCross Ref
  45. Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of continuous signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. Springer, 152--166.Google ScholarGoogle Scholar
  46. Dimitrios Milios, Guido Sanguinetti, and David Schnoerr. 2017. Probabilistic model checking for continuous time Markov chains via sequential bayesian inference. arXiv preprint arXiv:1711.01863 (2017).Google ScholarGoogle Scholar
  47. Brian Munsky and Mustafa Khammash. 2006. The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 4 (2006), 044104.Google ScholarGoogle ScholarCross RefCross Ref
  48. Tadao Murata. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE 77, 4 (1989), 541--580.Google ScholarGoogle ScholarCross RefCross Ref
  49. Amir Pnueli. 1977. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science 1977. IEEE, 46--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. René L. Schilling. 2017. Measures, Integrals and Martingales. Cambridge University Press.Google ScholarGoogle Scholar
  51. David Schnoerr, Botond Cseke, Ramon Grima, and Guido Sanguinetti. 2017. Efficient low-order approximation of first-passage time distributions. Phys. Rev. Lett. 119, 21 (2017), 210601.Google ScholarGoogle ScholarCross RefCross Ref
  52. Vahid Shahrezaei and Peter S. Swain. 2008. Analytical distributions for stochastic gene expression. Proc. Natl. Acad. Sci. U.S.A. 105, 45 (2008), 17256--17261.Google ScholarGoogle ScholarCross RefCross Ref
  53. Mukund Thattai and Alexander Van Oudenaarden. 2001. Intrinsic noise in gene regulatory networks. Proc. Natl Acad. Sci. U.S.A. 98, 15 (2001), 8614--8619.Google ScholarGoogle ScholarCross RefCross Ref
  54. Nicolaas Godfried Van Kampen. 1992. Stochastic Processes in Physics and Chemistry. Vol. 1. Elsevier.Google ScholarGoogle Scholar
  55. E. W. J. Wallace, D. T. Gillespie, K. R. Sanft, and L. R. Petzold. 2012. Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. IET Syst. Biol. 6, 4 (2012), 102--115.Google ScholarGoogle ScholarCross RefCross Ref
  56. Verena Wolf, Rushil Goel, Maria Mateescu, and Thomas A. Henzinger. 2010. Solving the chemical master equation using sliding windows. BMC Syst. Biol. 4, 1 (2010), 1.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Central Limit Model Checking

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computational Logic
        ACM Transactions on Computational Logic  Volume 20, Issue 4
        October 2019
        323 pages
        ISSN:1529-3785
        EISSN:1557-945X
        DOI:10.1145/3347091
        • Editor:
        • Orna Kupferman
        Issue’s Table of Contents

        Copyright © 2019 Owner/Author

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 16 July 2019
        • Accepted: 1 April 2019
        • Revised: 1 October 2018
        • Received: 1 April 2018
        Published in tocl Volume 20, Issue 4

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format