skip to main content
10.1145/345542.345609acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article
Free Access

Bounds on numers of vectors of multiplicities for polynomials which are easy to compute

Authors Info & Claims
Published:01 July 2000Publication History

ABSTRACT

Let F be an algebraically closed field of zero characteristic, a polynomial @@@@ ∈ F[X1, … , Xn have a multiplicative complexity r and ƒ1, … ƒk ∈ F[X1, … , Xn] be some polynomials of degrees not exceeding d, such that @@@@ = ƒ1 = ··· = ƒk = 0 has a finite number of roots. We show that the number of possible distinct vectors of multiplicities of these roots is small when r, d and k are small. As technical tools we design algorithms which produce Gröbner bases and vectors of multiplicities of the roots for a parametric zero-dimensional system. The complexities of these algorithms are singly exponential. We also describe an algorithm for parametric absolute factorization of multivariate polynomials. This algorithm has subexponential complexity in the case of a small (relative to the number of variables) degree of the polynomials.

References

  1. ABRW 96.Alonso, M., Becker, E., Roy, M.-F., WSrmann, T., Zeros, multiplicities and idempotents for zero-dimensional systems, Algorithms in Algebraic Geometry and Applications. Progress in Math., 143, 1996, 1-20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. BW 93.Becker, T., Weispfenning, V., Grb'bner Bases, Springer-Verlag, New-York, 1993.Google ScholarGoogle Scholar
  3. B 85.Buchberger, B., GrSbner bases: An algorithmic method in polynomial ideal theory. In: Bose, N.K. (Ed.), Multidimensional Systems Theory, Reidel, Dordrecht, 1985, 184-232.Google ScholarGoogle ScholarCross RefCross Ref
  4. BCS 97.Btirgisser, P., Clausen, M., Shokrollahi, M.A., Algebraic Complexity Theory, Berlin: Springer-Verlag, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. CGH 89.Caniglia, L., Galligo, A., Heintz, J., Some new effectivity bounds in computational geometry, Lecture Notes Camp. Sci., 357, 1989, 131-151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ca 89.Canny, J., Generalized characteristic polynomials, Lecture Notes Camp. Sci., 358, 1989, 293-299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C 84.Chistov, A., Algorithm of polynomial complexity for factoring polynomials and finding the components of the varieties in subexponential time, In: Zapiski Nauchnyh Seminarav LOMI, 137, 1984, 124-188. English translation in: J. Soviet Math., 34, 1838-1882.Google ScholarGoogle Scholar
  8. CG 84.Chistov, A., Grigoriev, D., Complexity of quantifier elimination in the theory of algebraically closed fields, Lecture Notes Camp. Sci., 176, 1984, 17-31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Co 67.Collins, G.E., Subresultants and reduced polynomial reminder sequences, or. A UM, 14, 1967, 128-142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. DGFS 89.Dickenstein, A., Giusti, M., Fitchas, N., Sessa, C., The membership problem for unmixed polynomial ideals is solvable in single exponential time, Proceedings 7th Intern. Conf. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes AAECC-7, Discrete Appl. Math., aa, 1989, 73-94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. FGLM 93.Faug~re, J.C., Gianni, P., Lazard, D., Mora, T., Efficient computation of zero-dimensional Gr6bner bases by change of ordering, J. Symbolic Computation, 16, 1993, 329-344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. FG 90.Fitchas, N., Galligo, A., Nullstellensatz effectif et conjacture de Serre (th~or~me de Quillen-Suslin) pour le calcul formel, Math. Nachrichten, 149, 1990, 231-253.Google ScholarGoogle ScholarCross RefCross Ref
  13. Ca 84.Gathen, von zur., Hensel and Newton methods in valuation rings, Math. Camp., 42, 1984, 637-661.Google ScholarGoogle ScholarCross RefCross Ref
  14. GK 85.Gathen, von zur J., Kaltofen, E., Factoring sparse multivariate polynomials, d. Camput. System Sci., 31, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gi 89.Gianni, P., Properties of GrSbner bases under specializations, Lecture Notes Camp. Sci., 378, 1989, 293-297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. GM 89.Gianni, P., Mora, T., Algebraic solution of systems of polynomial equations using Groebner bases, Lecture Notes Camp. Sci., 356, 1989, 247-257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. GH 93.Giusti, M., Heintz, J., La d~termination des points isol~s et de la dimension d'une vari~t~ alg~brique peut se faire en temps polynomial, Computational Algebraic Geometry and Commutative Algebra. Symposia Mathematica, 34, 1993, 216-256.Google ScholarGoogle Scholar
  18. G 84.Grigoriev, D., Factorization of polynomials over finite field and the solution of systems of algebraic equations, In: Zapiski Nauchnyh Seminarav LOMI, 137, 1984, 20-79. English translation in: J. Soviet Math., 34, 1762-1803.Google ScholarGoogle Scholar
  19. G 86.Grigoriev, D., Complexity of deciding the firstorder theory of algebraically closed fields, Izvestia of Academy of Sciences of the USSR, 50, 1986, 1106-1120 (in Russian, English translation in Math. USSR Izvestia, 29, 1987, 459-475).Google ScholarGoogle Scholar
  20. G 87.Grigoriev, D., Complexity of quantifier elimination in the theory of ordinary differential equations, Lecture Notes in Computer Sci., 378, 1987, 11-25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G 88.Grigoriev, D., Complexity of deciding Tarski algebra. J. Symbolic Camput., 5, 1988, 65-108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G 90.Grigoriev, D., Complexity of factoring and GCD calculating of ordinary linear differential operators, J. Symbolic Camput., 10, 1990, 7-37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. GKS 90.Grigoriev, D., Karpinski, M., Singer, M., Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields, SIAM J. Camput., 19, 1990, 1059-1063. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H 83.Heintz, J., Definability and fast quantifier elimination in algebraically closed fields, Thear. Camput. Sci., 24, 1983, 239-277.Google ScholarGoogle ScholarCross RefCross Ref
  25. K 89.Kalkbrener, M., Solving systems of algebraic equations by using GrSbner bases, Lecture Notes Camp. Sci., 378, 1989, 282-292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kal 85.Kaltofen, E., Sparse Hensel lifting, Lecture Notes Camp. Sci., 204, 1985, 4-17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. KMH 89.Kobayashi, H., Moritsugu, S., Hogan, R.W., Solving systems of algebraic equations, Lecture Notes Camp. Sci., 358, 1989, 139-149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. KP 94.Krick,T., Pardo, L.M., Une approche informatique pour l'approximation diophantienne, C.R. Acad. Sci. Paris, S~rie I, 318, 1994, 407-412.Google ScholarGoogle Scholar
  29. Lak 91.Lakshman, Y.N., A single exponential bound on the complexity of computing GrSbner bases of zero dimensional ideals, Effective methods in algebraic geometry, Progress in Mathematics, 94, Birkhiiuser Verlag, Basel, 1991, 227-234.Google ScholarGoogle Scholar
  30. Laz 81.Lazard, D., Resolution des systemes d'equations algebriques, Theoretical Computer Science, 15, 1981, 77- 110.Google ScholarGoogle ScholarCross RefCross Ref
  31. PS 64.P61ya, G., SzegS, G., Aufgaben und Lehrsiitze aus der Analysis, Springer-Verlag, Berlin, 1964.Google ScholarGoogle Scholar
  32. Ro 99.Rouillier, F., Solving zero-dimensional systems through rational univariate representations, Applic. Algebra in Eng. Cammun. Computing, 9, 1999, 433-461.Google ScholarGoogle ScholarCross RefCross Ref
  33. T 78.Trinks, W., Uber Buchbergers Verfahren, Systeme algebraisher Gleichungen zu 15sen, J. Number Th., 10, 1978, 475-488.Google ScholarGoogle ScholarCross RefCross Ref
  34. W 89.Weispfenning, V., Constructing universal Groebner bases, Lecture Notes Camp. Sci., 356, 1989, 408-417. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Bounds on numers of vectors of multiplicities for polynomials which are easy to compute

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISSAC '00: Proceedings of the 2000 international symposium on Symbolic and algebraic computation
        July 2000
        309 pages
        ISBN:1581132182
        DOI:10.1145/345542

        Copyright © 2000 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2000

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        ISSAC '00 Paper Acceptance Rate40of98submissions,41%Overall Acceptance Rate395of838submissions,47%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader