skip to main content
10.1145/369028.369139acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
Article
Free Access

Molecular simulation of rheological properties using massively parallel supercomputers

Authors Info & Claims
Published:17 November 1996Publication History

ABSTRACT

Advances in parallel supercomputing now make possible molecular-based engineering and science calculations that will soon revolutionize many technologies, such as those involving polymers and those involving aqueous electrolytes. We have developed a suite of message-passing codes for classical molecular simulation of such complex fluids and amorphous materials and have completed a number of demonstration calculations of problems of scientific and technological importance with each (described at the World Wide Web site http://flory.engr.utk.edu/ldrd). In this paper, we will focus on the molecular simulation of rheological properties, particularly viscosity, of simple and complex fluids using parallel implementations of non-equilibrium molecular dynamics. Such calculations represent significant challenges computationally because, in order to reduce the thermal noise in the calculated properties within acceptable limits, large systems and/or long simulated times are required.

References

  1. Allen, M. P. and D. J. Tildesley, Computer Simulation of Liquids. 1987, Oxford: Oxford University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Evans, D. J. and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids. 1990, New York: Academic Press.Google ScholarGoogle Scholar
  3. Siepmann, J. I., S. Karaborni, and B. Smit, Vapor Liquid Equilibria of Model Alkanes. Journal of the American Chemical Society, 1993. 115: p. 6454.Google ScholarGoogle ScholarCross RefCross Ref
  4. Siepmann, J. I., S. Karaborni, and B. Smit, Simulating the Critical Behaviour of Complex Fluids. Nature, 1993. 365: p. 330.Google ScholarGoogle Scholar
  5. Mundy, C. J., J. I. Siepmann, and M. L. Klein, Calculation of the shear viscosity of decane using a reversible multiple time-step algorithm. Journal of Chemical Physics, 1995. 102: p. 3376.Google ScholarGoogle ScholarCross RefCross Ref
  6. Cui, S. T., P. T. Cummings, and H. D. Cochran, Multiple time step nonequilibrium molecular dynamics simulation of n-decane. Journal of Chemical Physics, 1996. 104: p. 255.Google ScholarGoogle ScholarCross RefCross Ref
  7. Mondello, M. and G. S. Grest, Molecular dynamics of linear and branched alkanes. Journal of Chemical Physics, 1995. 103: p. 7156.Google ScholarGoogle ScholarCross RefCross Ref
  8. Cui, S. T., S. A. Gupta, P. T. Cummings, and H. D. Cochran, Molecular dynamics simulations of the rheological properties of normal decane, hexadecane and tetracosane. J. Chem. Phys., 1996. 105: p. 1214-1220Google ScholarGoogle ScholarCross RefCross Ref
  9. Lees, A. W. and S. F. Edwards, The computer study of transport processes under extreme conditions. J. Phys. C: Solid State, 1972. 5: p. 1921.Google ScholarGoogle ScholarCross RefCross Ref
  10. Tuckerman, M. E., B. J. Berne, and G. J. Martyna, Reversible multiple time step molecular dynamics. J. Chem. Phys., 1992. 97: p. 1990.Google ScholarGoogle Scholar
  11. Evans, D. J. and G. P. Morriss, Non-Newtonian molecular dynamics. Computer Phys. Reports, 1984. 1: p. 297.Google ScholarGoogle ScholarCross RefCross Ref
  12. Pinches, M. R. S., D. J. Tildesley, and W. Smith, Large scale molecular dynamics on parallel computers using the link-cell algorithm. Molecular Simulation, 1991. 6: p. 51.Google ScholarGoogle ScholarCross RefCross Ref
  13. Hansen, D. P. and D. J. Evans, A parallel algorithm for nonequilibrium molecular dynamics simulation of shear flow on distributed memory machines. Molecular Simulation, 1994. 13: p. 375-393.Google ScholarGoogle ScholarCross RefCross Ref
  14. Rastogi, S. and N. Wagner, Massively Parallel Non-Equilibrium Brownian Dynamics Simulations for Complex Fluids: The Rheology of Brownian Suspensions. Computers chem. Engng, 1995. 19: p. 693-718.Google ScholarGoogle ScholarCross RefCross Ref
  15. Bhupathiraju, R. K., P. T. Cummings, and H. D. Cochran, An Efficient Parallel Algorithm for Nonequilibrium Molecular Dynamics Simulations of Very Large Systems in Planar Couette Flow. Molec. Phys., 1996. in press.Google ScholarGoogle Scholar
  16. Evans, D. J. and G. P. Morriss, Phys. Rev. A, 1988. 38: p. 41.Google ScholarGoogle Scholar

Index Terms

  1. Molecular simulation of rheological properties using massively parallel supercomputers

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in
                • Article Metrics

                  • Downloads (Last 12 months)10
                  • Downloads (Last 6 weeks)0

                  Other Metrics

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader