skip to main content
article
Free Access

Three-dimensional object recognition

Published:01 March 1985Publication History
Skip Abstract Section

Abstract

A general-purpose computer vision system must be capable of recognizing three-dimensional (3-D) objects. This paper proposes a precise definition of the 3-D object recognition problem, discusses basic concepts associated with this problem, and reviews the relevant literature. Because range images (or depth maps) are often used as sensor input instead of intensity images, techniques for obtaining, processing, and characterizing range data are also surveyed.

References

  1. ABE, N., ITHO, F., AND TSUJI, S. 1983. Toward generation of 3-dimensional models of objects using 2-dimensional figures and explanations in language. In Proceedings of the 8th International Joint Conference on Artificial Intelligence (Karlsruhe, West Germany, Aug. 8-12). IJCAI, pp. 1113-1115.]]Google ScholarGoogle Scholar
  2. AGiN, G. J., AND BINFORD, T. O. 1973. Computer description of curved objects. In Proceedings of the 3rd International Joint Conference on Artificial Intelligence (Stanford, Calif., Aug. 20-23). IJCAI, pp. 629-640.]]Google ScholarGoogle Scholar
  3. ALDEFELD, B. 1983. Automatic 3D reconstruction from 2D geometric part descriptions. In Proceedings of the Computer Vision and Pattern Recognition Conference (Washington, D.C., June 19- 23). IEEE, New York, pp. 66-72.]]Google ScholarGoogle Scholar
  4. ALTSCHULER, M. D., POSDAMER, J. L., FRIEDER, G., ALTSCHULER, B. R., AND TABOADA, J. 1981. The numerical stereo camera. In Proceedings of The Society for Photo-Optical Instrumentation Engineers Conference on 3-D Machine Perception, vol. 283, SPIE, Bellingham, Wash., pp. 15-24.]]Google ScholarGoogle Scholar
  5. ANDERSON, R. L., AND HOUSEMAN, E. E. 1942. Tables of Orthogonal Polynomial Values Extended to N = 104. Research Bulletin 297, Iowa State College of Agriculture and Mechanic Arts, Ames, Iowa (Apr.).]]Google ScholarGoogle Scholar
  6. ASADA, H., AND BRADY, M. 1984. The curvature primal sketch. In Proceedings of the Workshop on Computer Vision: Representation and Control (Annapolis, Md., Apr. 30-May 2). IEEE, New York, pp. 8-17.]]Google ScholarGoogle Scholar
  7. BAOLER, N., AND BAJCSY, R. 1978. Three-dimensional representations for computer graphics and computer vision. ACM Comput. Graphics 12, 153- 160.]] Google ScholarGoogle Scholar
  8. BAJCSY, R. (Ed.) 1979. Proceedings of the Workshop on Representation of Three-Dimensional Objects (Univ. of Pennsylvania, Philadelphia, Pa., May 1-2).]]Google ScholarGoogle Scholar
  9. BAJCSY, R. 1980. Three-dimensional scene analysis. In Proceedings of the 5th International Conference on Pattern Recognition (Miami, Fla., Dec. 1-4). IAPR and IEEE, New York, pp. 1064-1074.]]Google ScholarGoogle Scholar
  10. BAKER, H. 1977. Three-dimensional modeling, in Proceedings of the 5th International Joint Conference on Artificial Intelligence (Cambridge, Mass., Aug. 22-25). IJCAI, pp. 649-655.]]Google ScholarGoogle Scholar
  11. BALLARD, D. H., AND BROWN, C. M. 1982. Computer Vision. Prentice-Hall, Englewood Cliffs, N.J.]] Google ScholarGoogle Scholar
  12. BALLARD, D. H., AND SABBAH, D. 1983. Viewer independent shape recognition. IEEE Trans. Pattern Anal. Machine lnteU. PAMI-5, 2 (Mar.), 653- 659.]]Google ScholarGoogle Scholar
  13. BARNARD, S. T., AND FISCHLER, M. A. 1982. Computational stereo. ACM Comput. Surv. 14, 4 (Dec.), 553-572.]] Google ScholarGoogle Scholar
  14. BARNHILL, R. E. 1983. A survey of the representation and design of surfaces. IEEE Comput. Graphics Appl. 3, 7 (Oct.), 9-16.]]Google ScholarGoogle Scholar
  15. BARROW, H. G., AND TENENBAUM, J. M. 1981. Computational vision. In Proceedings of the IEEE 69, 5 (May), 572-595.]]Google ScholarGoogle Scholar
  16. BAUMGART, B. G. 1974. Geometric modeling for computer vision. Ph.D. dissertation, Computer Science Dept., Stanford Univ., Stanford, Calif.]] Google ScholarGoogle Scholar
  17. BEAUDET, P. R. 1978. Rotationally invariant image operators. In Proceedings of the 4th International Conference Pattern Recognition (Kyoto, Japan, Nov. 7-10). IAPR and IEEE, New York, pp. 579- 583.]]Google ScholarGoogle Scholar
  18. BESL, P. J., AND JA~N, R. C. 1984. Surface characterization for three-dimensional object recognition. RSD-TR-20-84, Electrical Engineering and Computer Science Dept., Univ. of Michigan, Ann Arbor, Mich. (Dec.).]]Google ScholarGoogle Scholar
  19. BESL, P. J., AND JAIN, R. C. 1985a. Intrinsic and extrinsic surface characteristics. In Proceedings of the Computer Vision and Pattern Recognition Conference (San Francisco, Calif., June 9-13). IEEE, New York, pp. 226-233.]]Google ScholarGoogle Scholar
  20. BESL, P. J., AND JAIN, R. C. 1985b. Invariant surface characteristics for three-dimensional object recognition in range images. Comput. Vision, Graphics, Image Processing. To appear.]] Google ScholarGoogle Scholar
  21. BESL, P. J., AND JAIN, R. C. 1985c. Range image understanding. In Proceedings of the Computer Vision and Pattern Recognition Conference (San Francisco, Calif., June 9-13). IEEE, New York, pp. 430-451.]]Google ScholarGoogle Scholar
  22. BESL, P. J., DELP, E. J., AND JAIN, R. C. 1985. Automatic visual solder joint inspection. IEEE J. Robotics and Automation 1, i (May), 42-56.]]Google ScholarGoogle Scholar
  23. BHANU, B. 1982. Surface representation and shape matching of 3-D objects. In Proceedings of the Pattern Recognition and Image Processing Conference (Las Vegas, Nev., June 14-17). IEEE, New York, pp. 349-354.]]Google ScholarGoogle Scholar
  24. BHANU, B. 1984. Representation and shape matching of 3-D objects. IEEE Trans. Pattern Anal. Machine InteU. PAMI-6, 3 (May), 340-350.]]Google ScholarGoogle Scholar
  25. BLEOSOE, W. W. 1974. The sup-inf method in Presburger arithmetic. Dept. of Math and Computer Science Memo ATP-18, Univ. of Texas, Austin, Tex.]]Google ScholarGoogle Scholar
  26. BLUM, H. 1967. A transformation for extracting new descriptors of shape. In Models for the Perception of Speech and Visual Form. W. Wathen-Dunn, Ed., MIT Press, Cambridge, Mass., pp. 362-380.]]Google ScholarGoogle Scholar
  27. BINFORD, T. O. 1982. Survey of model-based image analysis systems. Int. J. Robotics Res. 1, 1 (Spring), 18-64.]]Google ScholarGoogle Scholar
  28. BOCQUET, J. C., AND TICHKIEWITCH, S. 1982. An 'expert system' for reconstruction of mechanical objects from projections. In Proceedings of the 6th International Conference on Pattern Recognition (Munich, West Germany, Oct. 19-22). IAPR and IEEE, New York, pp. 491-496.]]Google ScholarGoogle Scholar
  29. BOISSONNAT, J. D. 1982. Representation of object triangulating points in 3-D space. In Proceedings of the 6th International Conference on Pattern Recognition (Munich, West Germany, Oct. 19- 22). IAPR and IEEE, New York, pp. 830-832.]]Google ScholarGoogle Scholar
  30. BOISSONNAT, Z. D., AND FAUGERAS, O. D. 1981. Triangulation of 3-D objects. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (Vancouver, B.C., Canada, Aug. 24-28). IJCAI, pp. 658-660.]]Google ScholarGoogle Scholar
  31. BOLLE, R. M., AND COOPER, D. B. 1984. Bayesian recognition of local 3-D shape by approximating image intensity functions with quadric polynomials. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6, 4 (July), 418-429.]]Google ScholarGoogle Scholar
  32. BOLLE, R. M., COOPER, D. B., AND CERNUSHI-FRIAS, B. 1982. Three-dimensional surface shape recognition by approximating image intensity functions with quadric polynomials. In Proceedings of the Pattern Recognition and Image Processing Conference (Las Vegas, Nevada, June 14-17). IEEE-CS, New York, pp. 611-617.]]Google ScholarGoogle Scholar
  33. BOLLES, R. C., AND CAIN, R. A. 1982. Recognizing and locating partially visible objects: the localfeature-focus method. Int. J. Robotics Res. 1, 3 (Fall), 57-82.]]Google ScholarGoogle Scholar
  34. BOLLES, R. C., AND FISCHLER, M. A. 1981. A RAN- SAC-based approach to model fitting and its application to finding cylinders in range data. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (Vancouver, B.C., Canada, Aug. 24-28). IJCAI, pp. 637-643.]]Google ScholarGoogle Scholar
  35. BOLLES, R. C., HORAUD, P., AND HANNAH, M. J. 1983. 3DPO: A three-dimensional part orientation system. In Proceedings of the 8th International Joint Conference on Artificial Intelligence (Karlsruhe, West Germany, Aug. 8-12). IJCAI, pp. 1116-1120.]]Google ScholarGoogle Scholar
  36. BOYTER, B. A., AND AGGARWAL, J. K. 1984. Recognition with range and intensity data. In Proceedings of Workshop on Computer Vision: Representation and Control (Annapolis, Md., Apr. 30- May 2). IEEE, New York, pp. 112-117.]]Google ScholarGoogle Scholar
  37. BRADY, M. 1981. Preface--The changing shape of computer vision. Artificial Intell. 17 (Aug.), 1-15.]]Google ScholarGoogle Scholar
  38. BRADY, M. 1982. Computational approaches to iraage understanding. ACM Comput. Surv. 14, 1 (Mar.), 3-71.]] Google ScholarGoogle Scholar
  39. BRADY, M., PONCE, J., YUILLE, A., AND ASADA, H. 1985. Describing surfaces. In Proceedings of the 2nd International Symposium on Robotics Research, H. Hanafusa and H. Inoue, Eds., MIT Press, Cambridge, Mass.]]Google ScholarGoogle Scholar
  40. BROOKS, R. A. 1981. Symbolic reasoning among 3-D models and 2-D images. Artificial Intell. 17 (Aug.), 285-348.]]Google ScholarGoogle Scholar
  41. BROOKS, R. A. 1982. Representing possible realities for vision and manipulation. In Proceedings of the Pattern Recognition and Image Processing Conference (Las Vegas, Nevada, June 14-17). iEEE, New York, pp. 587-592.]]Google ScholarGoogle Scholar
  42. BROOKS, R. A. 1983. Model-based three-dimensional interpretations of two-dimensional images. IEEE Trans. Pattern Anal. Machine InteU. PAMI-5, 2 (Mar.), 140-149.]]Google ScholarGoogle Scholar
  43. BROOKS, R. A., GREINER, R., AND BINFORO, T. O. 1979. The ACRONYM model-based vision systern. In Proceedings of the 6th International Joint Conference on Artificial Intelligence (Tokyo, Japan, Aug. 20-23). iJCAI, pp. 105-113.]]Google ScholarGoogle Scholar
  44. BROWN, C. M. 1981. Some mathematical and representational aspects of solid modeling. IEEE Trans. Pattern Anal. Machine inteU. PAMI-3, 4 (July), 444-453.]]Google ScholarGoogle Scholar
  45. CARRIHILL, B., AND HUMMEL, R. 1984. Experiments with intensity ratio sensors. Tech. Rep., Courant Institute of Mathematical Science, New York Univ., New York, N.Y.; Comput. Vision, Graphics, image Processing. To appear.]]Google ScholarGoogle Scholar
  46. CASALE, M. S., AND STANTON, E. L. 1985. An overview of analytic solid modeling. IEEE Comput. Graphics Appl. 5, 2 (Feb.), 45-56.]]Google ScholarGoogle Scholar
  47. CASASENT, D., VIJAYA-KUMAR, B. V. K., AND SHARMA, V. 1982. Synthetic discriminant functions for three-dimensional object recognition. In Proceedings of The Society for Photo-Optical Instrumentation Engineers Conference on Robotics and Industrial Inspection, vol. 360 (San Diego, Calif., Aug. 24-27). SPIE, Bellingham, Wash., pp. 136-142.]]Google ScholarGoogle Scholar
  48. CERNUSHI-FRIAS, B., COOPER, D. B., AND BOLLE, R. M. 1982. Estimation of location and orientation of 3-D surfaces using a single 2-D image. In Proceedings of the Pattern Recognition and Image Processing Conference (Las Vegas, Nevada, June 14-17). IEEE, New York, pp. 605-610.]]Google ScholarGoogle Scholar
  49. CHAKRAVARTY, I. 1982. The use of characteristic views as a basis for recognition of three-dimensional objects. IPL-TR-034, Image Processing Lab, Rensselaer Polytechnic Inst., Troy, N.Y. (Oct.).]]Google ScholarGoogle Scholar
  50. CHAKRAVARTY, I., AND FREEMAN, H. 1982. Characteristic views as a basis for three-dimensional object recognition. In Proceedings of The Society for Photo-Optical Instrumentation Engineers Conference on Robot Vision, vol. 336 (Arlington, Va., May 6-7). SPIE, Bellingham, Wash., pp. 37-45.]]Google ScholarGoogle Scholar
  51. COLEMAN, E. N., AND JAIN, R. 1982. Obtaining shape of textured and specular surfaces using four-source photometry. Comput. Graphics Image Processing 18, 4 (Apr.), 309-328.]]Google ScholarGoogle Scholar
  52. CONNOLLY, C. I. 1984. Cumulative generation of octree models from range data. In Proceedings of the International Conference on Robotics (Atlanta, Ga., Mar. 13-15). IEEE, New York, pp. 25-32.]]Google ScholarGoogle Scholar
  53. CONNOLLY, C. I. 1985. The determination of next best views. In Proceedings of the International Conference on Robotics and Automation (St. Louis, Mo., Mar. 25-28). IEEE, New York, pp. 432-435.]]Google ScholarGoogle Scholar
  54. DANE, C. 1982. An object-centered three-dimensional model builder. Ph.D. dissertation, Computer and Information Sciences Dept., Moore School of Electrical Engineering, Univ. of Pennsylvania, Philadelphia, Pa.]] Google ScholarGoogle Scholar
  55. DANE, C., AND BAJCSY, R. 1982. An object-centered three-dimensional model builder. In Proceedings of the 6th International Conference on Pattern Recognition (Munich, West Germany, Oct. 19- 22). IEEE, New York, pp. 348-350.]]Google ScholarGoogle Scholar
  56. DOUGLASS, R. M. 1977. Recognition and depth perception of objects in real world scenes. In Proceedings of the 5th International Joint Conference on Artificial Intelligence (Cambridge, Mass., Aug. 22-25). IJCAI, p. 657.]]Google ScholarGoogle Scholar
  57. DOUGLASS, R. M. 1981. Interpreting 3-D scenes: a model-building approach. Comput. Graphics Iraage Processing 17, 2 (Oct.), 91-113.]]Google ScholarGoogle Scholar
  58. DUDA, R. O., NITZAN, D., AND BARRETT, P. 1979. Use of range and reflectance data to find planar surface regions. IEEE Trans. Pattern Anal. Machine Intel~ PAMI-I, 3 (July), 254-271.]]Google ScholarGoogle Scholar
  59. DUOANI, S. A., BREEmNG, K. J., AND MCGHEE, R. B. 1977. Aircraft identification by moment invariants. IEEE Trans. Comput. C-26, I (Jan.), 39- 46.]]Google ScholarGoogle Scholar
  60. DYER, C. R., AND CHIN, R. T. 1984. Model-based industrial part recognition: systems and algorithms. Computer Sciences Tech. Rep. 538, Univ. of Wisconsin, Madison, Wis. (Mar.).]]Google ScholarGoogle Scholar
  61. FANG, T. J., HUANG, Z. H., KANAL, L. N., LAMBmD, B., LAVINE, D., STOCKMAN, G., AND XIONG, F. L. 1982. Three-dimensional object recognition using a transformation clustering technique. In Proceedings of the 6th International Conference on Pattern Recognition (Munich, West Germany, Oct. 19-22). IAPR and IEEE, New York, pp. 678- 681.]]Google ScholarGoogle Scholar
  62. FAROUKI, R. T., AND HINDS, J. K. 1985. A hierarchy of geometric forms. IEEE Comput. Graphics Appl. 5, 5 (May), 51-78.]]Google ScholarGoogle Scholar
  63. FAUGERAS, O. D. 1984. New steps toward a flexible 3-D vision system for robotics. In Proceedings of the 7th International Con/erence on Pattern Recognition (Montreal, Canada, July 30-Aug. 2). IEEE, New York, pp. 796-805.]]Google ScholarGoogle Scholar
  64. FAUGERAS, O. D., AND HEBERT, M. 1983. A 3-D recognition and positioning algorithm using geometrical matching between primitive surfaces. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (Vancouver, B.C., Canada, Aug. 24-28). IJCAI, pp. 996-1002.]]Google ScholarGoogle Scholar
  65. FAUGERAS, O. D., HEBERT, M., MUSSI, P., AND BOIS- SONNAT, J. D. 1982. Polyhedral approximation of 3-D objects without holes. In Proceedings of the Pattern Recognition and Image Processing Conference (Las Vegas, Nevada, June 14-17). IEEE, New York, pp. 593-598.]]Google ScholarGoogle Scholar
  66. FAUX, I. D., AND PRATT, M. J. 1979. Computational Geometry for Design and Manufacture. Ellis Hotwood, Chichester, U.K.]] Google ScholarGoogle Scholar
  67. FEKETE, G., AND DAVm, L. 1984. Property spheres: a new representation for 3-D object recognition. In Proceedings of the Workshop on Computer Vision: Representation and Control (Annapolis, Md., Apr. 30-May 2). IEEE, New York, pp. 192- 201.]]Google ScholarGoogle Scholar
  68. FISHER, R. B. 1983. Using surfaces and object models to recognize partially obscured objects. In Proceedings of the 8th International Joint Conference on Artificial Intelligence (Karlsruhe, West Germany, Aug. 8-12). IJCAI, pp. 989-995.]]Google ScholarGoogle Scholar
  69. FOLEY, J. D., AND VAN DAM, A. 1982. Fundamentals of Interactive Computer Graphics. Addison-Wesley, Reading, Mass.]] Google ScholarGoogle Scholar
  70. GARIBOTTO, G., AND TOSINI, R. 1982. Description and classification of 3-D objects. In Proceedings of the 6th International Conference on Pattern Recognition (Munich, West Germany, Oct. 19- 22). IEEE, New York, pp. 833-835.]]Google ScholarGoogle Scholar
  71. GENNERY, D. B. 1979. Object detection and measurement using stereo vision. In Proceedings of the 6th International Joint Conference on Artificial Intelligence (Tokyo, Japan, Aug. 20-23). IJCAI, pp. 320-327.]]Google ScholarGoogle Scholar
  72. GEOMOD User Manual and Reference Manual. 1982. Structural Dynamics Research Corporation (SDRC), Cincinnati, Ohio.]]Google ScholarGoogle Scholar
  73. GEVARTER, W. B. 1983. Machine vision: a report on the state of the art. Comput. Mech. Eng. (CIME), 1, 4 (Apr.), 25-30.]]Google ScholarGoogle Scholar
  74. GIL, B., MITICHE, A., AND AGGARWAL, J. K. 1983. Experiments in combining intensity and range edge maps. Comput. Vision, Graphics, Iraage Processing 21, (Mar.), 395-411.]]Google ScholarGoogle Scholar
  75. GOAD, C. 1983. Special purpose automatic programruing for 3D model-based vision. In Proceedings of the image Understanding Workshop (Arlington, Va., June 23). DARPA, Science Applications, McLean, Va., pp. 94-104.]]Google ScholarGoogle Scholar
  76. GONZALEZ, R. C., AND WINTZ, P. 1978. Digital Iraage Processing. Addison-Wesley, Reading, Mass.]] Google ScholarGoogle Scholar
  77. GRIMSON, W. E. L. 1980. A computer implementation of a theory of human stereo vision. MIT Artificial Intelligence Lab Memo 565, Massachusetts Institute of Technology, Cambridge, Mass.]]Google ScholarGoogle Scholar
  78. GUZMAN, A. 1968. Computer recognition of threedimensional objects in a visual scene. MAC-TR- 59, Ph.D. dissertation, Project MAC, Massachusetts Institute of Technology, Cambridge, Mass.]]Google ScholarGoogle Scholar
  79. HAKALA, D. G., HILLYARD, R. C., AND MALRAISON, P. F. 1981. Natural quadrics in mechanical design. SIGGRAPH '81 Seminar: Solid Modeling, (Dallas Tex., Aug. 3-7).]]Google ScholarGoogle Scholar
  80. HALL, E. L., TIO, J. B. K., MCPHERSON, C. A., AND SADJAOI, F. A. 1982. Measuring curved surfaces for robot vision. Computer 15, 12 (Dec.), 42-54.]]Google ScholarGoogle Scholar
  81. HARALICK, R. M. 1984. Digital step edges from zerocrossings of second directional derivatives. IEEE Trans. Pattern Anal. Machine Intell. PAMi-6, 1 (Jan.), 58-68.]]Google ScholarGoogle Scholar
  82. HARALICK, R. M., LAFFEY, T. J., AND WATSON, L. T. 1983. The topographic primal sketch. Int. J. Robotics Res. 2, i (Spring), 50-72.]]Google ScholarGoogle Scholar
  83. HEBERT, M., AND PONCE, J. 1982. A new method for segmenting 3-D scenes into primitives. In Proceedings of the 6th International Conference on Pattern Recognition (Munich, West Germany, Oct. 19-22). IAPR and IEEE, New York, pp. 836- 838.]]Google ScholarGoogle Scholar
  84. HENDERSON, T. C. 1982. Efficient segmentation method for range data. In Proceedings of The Society for Photo-Optical Instrumentation Engineers Conference on Robot Vision, vol. 336 (Arlington, Va., May 6-7). SPJE, Bellingham, Wash., pp. 46-47.]]Google ScholarGoogle Scholar
  85. HENDERSON, T. C. 1983. Efficient 3-D object representations for industrial vision systems. IEEE Trans. Pattern Anal. Machine InteU. PAMI-5, 6 (Nov.), 609-617.]]Google ScholarGoogle Scholar
  86. HENDERSON, T. C., AND BHANU, B. 1982. Threepoint seed method for the extraction of planar faces from range data. In Proceedings of the Workshop on Industrial Applications of Machine Vision (Research Triangle Park, N.C., May). IEEE, New York, pp. 181-186.]]Google ScholarGoogle Scholar
  87. HERMAN, M., AND KANADE, T. 1984. The 3-D MOS- AIC scene understanding system. In Proceedings of the image Understanding Workshop (New Orleans, La., Oct. 3-4). DARPA, Science Applications, McLean, Va., pp. 137-148.]]Google ScholarGoogle Scholar
  88. HERMAN, M., KANAOE, T., AND KUROE, S. 1983. The 3-D MOSAIC scene understanding system. In Proceedings of the 8th International Joint Conference on Artificial Intelligence (Karlsruhe, West Germany, Aug. 8-12). IJCAI, pp. 1108:-1112.]]Google ScholarGoogle Scholar
  89. HORAUD, P., AND BOLLES, R. C. 1984. 3DPO's strategy for matching three-dimensional objects in range data. In Proceedings of the International Conference on Robotics (Atlanta, Ga., Mar. 13- 15). IEEE, New York, pp. 78-85.]]Google ScholarGoogle Scholar
  90. HORN, B. K. P. 1977. Understanding image intensities. Artificial InteU. 8, 2 (Apr.), 201-231.]]Google ScholarGoogle Scholar
  91. HORN, B. K. P. 1984. Extended Gaussian images. In Proceedings of the IEEE 72, 12 (Dec.), pp. 1656- 1678.]]Google ScholarGoogle Scholar
  92. HORN, B. K. P., AND IKEUCm, K. 1984. The mechanical manipulation of randomly oriented parts. Sci. Amer. 251, 2 (Aug.), 100-111.]]Google ScholarGoogle Scholar
  93. IDESAWA, M., AND YATAGAI, T. 1980. 3-D shape input and processing by Moire technique. In Proceedings of the 5th International Conference on Pattern Recognition (Miami, Fla., Dec. 1-4). IAPR and IEEE, New York, pp. 1085-1090.]]Google ScholarGoogle Scholar
  94. IGES 1983. Initial Graphics Exchange Specification (IGES), Version 2.0 (Document No. PB83- 137448, National Technical Information Service (NTIS), 5285 Port Royal Rd., Springfield, Va., 20161.]]Google ScholarGoogle Scholar
  95. IKEUCHI, K. 1981. Recognition of 3-D objects using the extended Gaussian image. In Proceedings of the 7th International Joint Conference on Artificial {ntelUgence (Vancouver, B.C., Canada, Aug. 24-28). IJCAI, pp. 595-600.]]Google ScholarGoogle Scholar
  96. IKEUCHI, K., AND HORN, B. K. P. 1981. Numerical shape from shading and occluding boundaries. Artificial InteU. 17 (Aug.), 141-184.]]Google ScholarGoogle Scholar
  97. IKEUCHI, K., HORN, B. K. P., NAGATA, $., CALLAHAN, T., AND FEIMGOLD, O. 1983. Picking up an object from a pile of objects. MIT Artificial Intel}igence Lab Memo 726. Massachusetts Institute of Technology, Cambridge, Mass.]]Google ScholarGoogle Scholar
  98. INOKUCHI, S., AND NEVATIA, R. 1980. Boundary detection in range pictures. In Proceedings of the 5th International Conference on Pattern Recognition (Miami, Fla., Dec. 1-4). IAPR and IEEE, New York, pp. 1031-1035.]]Google ScholarGoogle Scholar
  99. INOKUCHI, S., NITA, T., MATSUDAY, F., AND SAKURAI, Y. 1982. A three-dimensional edge-region operator for range pictures. In Proceedings of the 6th International Conference on Pattern Recognition (Munich, West Germany, Oct. 19-22). IAPR and iEEE, New York, pp. 918-920.]]Google ScholarGoogle Scholar
  100. INOKUCHI, $., SATO, K., AND MATSUDA, F. 1984. Range imaging system for 3-D object recognition. In Proceedings of the 7th International Conference on Pattern Recognition (Montreal, Canada, July 30-Aug. 2). IAPR and IEEE, New York, pp. 806-808.]]Google ScholarGoogle Scholar
  101. JAIN, R. 1983. Dynamic scene analysis. In Progress in Pattern Recognition, vol. 2. A. Rosenfeld and L. Kanal, Eds., North-Holland, Amsterdam, The Netherlands.]]Google ScholarGoogle Scholar
  102. JARVIS, R. A. 1983a. A perspective on range finding techniques for computer vision. IEEE Trans. Pattern Anal. Machine Intell. PAMI-5, 2 (Mar.), 122-139.]]Google ScholarGoogle Scholar
  103. JARVIS, R. A. 1983b. A laser time-of-flight range scanner for robotic vision. IEEE Trans. Pattern Anal. Machine InteU. PAMI-5, 5 (Sept.),505-512.]]Google ScholarGoogle Scholar
  104. KANAOE, T. 1981. Recovery of the three-dimensional shape of an object from a single view. Artificial InteU. 17 (Aug.), 409-460.]]Google ScholarGoogle Scholar
  105. KIM, H. S., JAIN, R. C., AND VOLZ, R. A. 1985. Object recognition using multiple views. In Proceedings of the International Conference on Robotics and Automation (St. Louis, Mo., Mar. 25-28). IEEE, New York, pp. 28-33.]]Google ScholarGoogle Scholar
  106. KOENOERINK, J. J., AND VAN DOORN, A. J. 1976. The singularities of the visual mapping. Biol. Cybern. 24, 1, 51-59.]]Google ScholarGoogle Scholar
  107. KOENOERINK, J. J., AND VAN DOORN, A. J. 1979. Internal representation of solid shape with respect to vision. Biol. Cybern. 32, 4, 211- 216.]]Google ScholarGoogle Scholar
  108. KUAN, D. T., AND DRAZOVICH, R. J. 1984. Modelbased interpretation of range imagery, in Proceedings of the National Conference on Artificial Intelligence (Austin, Tex., Aug. 6-10). AAAI, pp. 210-215.]]Google ScholarGoogle Scholar
  109. LAFFEY, T. J., HARALICK, R. M., AND WATSON, L. T. 1982. Topographic classification of digital image intensity surfaces. In Proceedings of the Workshop on Computer Vision: Representation and Control (Rindge, N. H., Aug. 23-25). IEEE, New York, pp. 171-177.]]Google ScholarGoogle Scholar
  110. LAFUE, G. 1976. Recognition of three-dimensional objects from orthographic views. ACM Comput. Graphics 10, 2, 103-108.]] Google ScholarGoogle Scholar
  111. LAMY, F., LIEGEOIS, C., AND MEYRUEIS, P. 1982. Three-dimensional automated pattern recognition using the Moire technique. In Proceedings of The Society {or Photo-Optical Instrurnentation Engineers Conference on Robotics and Industrial Inspection, vol. 360, (San Diego, Calif., Aug. 24-27). SPIE, Bellingham, Wash., pp. 345- 351.]]Google ScholarGoogle Scholar
  112. LANGRIDGE, D. J. 1984. Detection of discontinuities in the first derivatives of surfaces. Comput. Vision, Graphics, Image Processing 27, 3 (Sept.), 291-308.]]Google ScholarGoogle Scholar
  113. LAViN, M. A. 1974. An application of line labeling and other scene-analysis techniques to the problem of hidden-line removal. Working Paper 66, MIT Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, Mass. (April).]]Google ScholarGoogle Scholar
  114. LEE, H-C., ANO FU, K-S. 1982. A computer vision system for generating object descriptions. In Proceedings of the Pattern Recognition and Image Processing Con/erence (Las Vegas, Nevada, June 14-17). IEEE, New York, pp. 466-472.]]Google ScholarGoogle Scholar
  115. LEE, H-C., ANO FU, K-S. 1983. Generating object descriptions for model retrieval. IEEE Trans. Pattern Anal. Machine InteU. PAMI-5, 5 (Sept.), 462-471.]]Google ScholarGoogle Scholar
  116. LEWIS, R. A., ANO JOHNSTON, A. R. 1977. A scanning laser rangefinder for a robotic vehicle. In Proceedings of the 5th International Joint Conference on Artificial Intelligence (Cambridge, Mass., Aug. 22-25). IJCAI, pp. 762-768.]]Google ScholarGoogle Scholar
  117. LIN, W. C., AND Fu, K. S. 1984. A syntatic approach to 3-D object representation. IEEE Trans. Pattern Anal. Machine InteU. PAMI-6, 3 (May), 351- 364.]]Google ScholarGoogle Scholar
  118. LIN, W. C., Fv, K. S., AND SEOERBERG, T. 1984. Estimation of three-dimensional object orientation for computer vision systems with feedback. J. Robotic Syst. 1, i (Spring), 59-82.]]Google ScholarGoogle Scholar
  119. LiN, C., AND PERRY, M. J. 1982. Shape description using surface triangularization. In Proceedings o/ the Workshop on Computer Vision: Representation and Control (Rindge, N. H., Aug. 23-25). IEEE, New York, pp. 38-43.]]Google ScholarGoogle Scholar
  120. LIPSCHUTZ, M. M. 1969. Differential Geometry. Mc- Graw Hill, New York.]]Google ScholarGoogle Scholar
  121. LITTLE, J. J. 1983. An iterative method for reconstructing convex polyhedra from extended Gaussian images. In Proceedings of the National Conference on Artificial Intelligence (Washington, D.C., Aug. 22-26). AAAI, pp. 247-250.]]Google ScholarGoogle Scholar
  122. LYNCH, D. K. 1981. Range enhancement via onedimensional spatial filtering. Comput. Graphics Image Processing 15, 2 (Feb.), 194-200.]]Google ScholarGoogle Scholar
  123. MACKWORTH, A., AND MOKHTARIAN, F. 1984. Scalebased description of planar curves. In Proceedings of the 5th National Conference of Canadian Society {or Computational Studies of Intelligence (London, Ont., Canada, May). Pp. 114-119.]]Google ScholarGoogle Scholar
  124. MARIMONT, D. H. 1984. A representation for image curves. In Proceedings of the National Conference on Artificial Intelligence (Austin, Tex., Aug. 6- 10). AAAI, pp. 237-242.]]Google ScholarGoogle Scholar
  125. MARTIN, W. N., AND AGGARWAL, J. K. 1983. Volumetric descriptions of objects from multiple views. IEEE Trans. Pattern Anal. Machine InteU. PAMI-5, 2 (Mar.), 150-158.]]Google ScholarGoogle Scholar
  126. McKEE, J. W., AND AGGARWAL, J. K. 1975. Computer recognition of partial views of three-dimensional curved objects. Computer Science Tech. Rep. 171, Univ. of Texas, Austin, Tex.]]Google ScholarGoogle Scholar
  127. MEAGHER, D. J. 1981. Geometric modeling using octree encoding. Comput. Graphics Image Processing 19, 2 (June), 129-147.]]Google ScholarGoogle Scholar
  128. MEAGHER, D. J. 1982. Efficient synthetic image generation of arbitrary 3-D objects. In Proceedings of the Pattern Recognition and Image Processing Conference (Las Vegas, Nevada, June 14-17). IEEE, New York, pp. 473-478.]]Google ScholarGoogle Scholar
  129. MEDION{, G., ANO NEVATIA, R. 1984. Description of 3-D surfaces using curvature properties. In Proceedings of the image Understanding Workshop (New Orleans, La., Oct. 3-4). DARPA, Science Applications, McLean, Va., pp. 291-299.]]Google ScholarGoogle Scholar
  130. MILGRIM, D. L., AND BJORKLUND, C. M. 1980. Range image processing: planar surface extraction. In Proceedings of the 5th International Conference on Pattern Recognition (Miami, Fla., Dec. 1-4). IEEE, New York, pp. 912-919.]]Google ScholarGoogle Scholar
  131. MINKOWSKI, H. 1897. Allgemeine lehrsatze uber die konvexen polyeder. Nachrichten vonder Koniglichen Gesellschaft der Wissenschaften, Mathematisch-Physikalische Klasse, Gottingen, pp. 198-219.]]Google ScholarGoogle Scholar
  132. MITICHE, A., AND AGGARWAL, J. K. 1983. Detection of edges using range information. IEEE Trans. Pattern Anal. Machine InteU. PAMI-5, 2 (Mar.), 174-178.]]Google ScholarGoogle Scholar
  133. MULGAONKAR, P. G., SHAPIRO, L. G., AND HARALICK, R. M. 1982. Recognizing three-dimensional objects single perspective views using geometric and relational reasoning. In Proceedings of the Pattern Recognition and Image Processing Conference (Las Vegas, Nevada, June 14-17). IEEE, New York, pp. 479-484.]]Google ScholarGoogle Scholar
  134. NACKMAN, L. R. 1982. Three-dimensional shape description using the symmetric axis transform. Ph.D. dissertation, Computer Science Dept., Univ. of North Carolina, Chapel Hill, N.C.]] Google ScholarGoogle Scholar
  135. NACKMAN, L. R. 1984. Two-dimensional critical point configuration graphs. IEEE Trans. Pattern Anal. Machine InteU. PAMI-6, 4 (July), 442-449.]]Google ScholarGoogle Scholar
  136. NEVATIA, R., AND BINFORD, T. O. 1973. Structured descriptions of complex objects. In Proceedings of the 3rd International Joint Conference on Artificial Intelligence (Stanford, Calif., Aug. 20-23). IJCAI, pp. 641-647.]]Google ScholarGoogle Scholar
  137. NEVATIA, R., ANO BINFORD, T. O. 1977. Description and recognition of curved objects. Artificial Intell. 8, 1, 77-98.]]Google ScholarGoogle Scholar
  138. NEWMAN, W. M., ANO SPROULL, R. F. 1979. Principles of Interactive Computer Graphics, 2nd ed. McGraw-Hill, New York.]] Google ScholarGoogle Scholar
  139. NiSmHARA, H. K. 1981. Intensity, visible-surface, and volumetric representations. Artificial InteU. 17 (Aug.), 265-284.]]Google ScholarGoogle Scholar
  140. NITZAN, D., BRAIN, A. E., AND DUDA, R. O. 1977. The measurement and use of registered reflectance and range data in scene analysis. In Proceedings of IEEE 65 (Feb.), 206-220.]]Google ScholarGoogle Scholar
  141. O'BRIEN, N., AND JAIN, R. 1984. Axial motion stereo. In Proceedings of the Workshop on Computer Vision: Representation and Control (Annapolis, Md., Apr. 30-May 2). IEEE, New York, pp. 88-94.]]Google ScholarGoogle Scholar
  142. O'NEILL, B. 1966. Elementary Differential Geometry. Academic Press, New York.]]Google ScholarGoogle Scholar
  143. O'ROURKE, J., AND BAOLER, N. 1979. Decomposition of three-dimensional objects into spheres. IEEE Trans. Pattern Anal. Machine InteU. PAMI-1, 3 (July), 295-305.]]Google ScholarGoogle Scholar
  144. OSHIMA, M., AND SHiRAI, Y. 1981. Object recognition using three-dimensional information. In Proceedings of the 7th International Joint Conference on Artificial {nteUigence (Vancouver, B.C., Canada, Aug. 24-28). IJCAI, pp. 601-606.]]Google ScholarGoogle Scholar
  145. OSHIMA, M., AND SHIRAI, Y. 1983. Object recognition using three-dimensional information. IEEE Trans. Pattern Anal. Machine InteU. PAMI-5, 4 (July), 353-361.]]Google ScholarGoogle Scholar
  146. PARTHASARATHY, S., BIRK, J., AND DESSlMOZ, J. 1982. Laser rangefinder for robot control and inspection. In Proceedings of the Society for Photo-Optical Instrumentation Engineers Conference on Robot Vision, vol. 336 (Arlington, Va., May 6-7). SPIE, Bellingham, Wash., pp. 2-11.]]Google ScholarGoogle Scholar
  147. PIPI?ON~., F. J., AND MARSHALL, T. G. 1983. A widefield scanning triangulation rangefinder for machine vision. Int. J. Robotics Res., 2, i (Spring), 39-49.]]Google ScholarGoogle Scholar
  148. PONCE, J., AND BRADY, M. 1985. Toward a surface primal sketch. In Proceedings of the International Conference on Robotics and Automation (St. Louis, Mo., Mar. 25-28). IEEE, New York, pp. 420-425.]]Google ScholarGoogle Scholar
  149. POPPLESTONE, R. J., BROWN, C. M., AMBLER, A. P., AND CRAWFORD, G. F. 1975. Forming models of plane-and-cylinder faceted bodies from light stripes, in Proceedings of the 4th International Joint Conference on Artificial Intelligence (Tbilisi, Georgia, USSR, Sept.). IJCAI, pp. 664-668.]]Google ScholarGoogle Scholar
  150. POTMESIL, M. 1979. Generation of 3D surface descriptions from images of pattern-illuminated objects. In Proceedings of the Pattern Recognition and Image Processing Conference (Chicago, Ill., Aug. 6-8). IEEE, New York, pp. 553-559.]]Google ScholarGoogle Scholar
  151. POTMESIL, M. 1982. Generating three-dimensional surface models of solid objects from multiple projections. IPL-TR-033, Ph.D. dissertation, Image Processing Lab, Rennselaer Polytechnic Institute, Troy, N.Y.]] Google ScholarGoogle Scholar
  152. POTMESlL, M. 1983. Generating models of solid objects by matching 3D surface segments. In Proceedings of the 8th International Joint Conference on Artificial Intelligence (Karlsruhe, West Getmany, Aug. 8-12). IJCAI, pp. 1089-1093.]]Google ScholarGoogle Scholar
  153. PRATT, W. K. 1978. Digital Image Processing. Wiley Interscience, New York.]] Google ScholarGoogle Scholar
  154. REEVES, A. P., PROKOP, R. J. ANDREWS, $. E., AND KUHL, F. P. 1984. Three-dimensional shape analysis using moments and Fourier descriptors. In Proceedings of the 7th International Conference on Pattern Recognition (Montreal, Canada, July 30-Aug. 2). IAPR and IEEE, New York, pp. 447- 450.]]Google ScholarGoogle Scholar
  155. REQUICHA, A. A. G. 1980. Representations for rigid solids: theory, methods, and systems. ACM Comput. Surv. 12, 4 (Dec.), 437-464.]] Google ScholarGoogle Scholar
  156. REQUICHA, A. A. G., ANO VOELCKER, H. B. 1982. Solid modeling: a historical summary and contemporary assessment. IEEE Comput. Graphics Appl. 2, 2 (Mar.), 9-24.]]Google ScholarGoogle Scholar
  157. REQUICHA, A. A. G., AND VOELCKER, H. B. 1983. Solid modeling: current status and research directions. IEEE Comput. Graphics Appl. 3, 7 (Oct.), 25-37.]]Google ScholarGoogle Scholar
  158. ROBERTS, L. G. 1965. Machine perception of threedimensional solids. Optical and Electro-Optical Information Processing. J. T. Tippett et al., Eds., MIT Press, Cambridge, Mass. pp. 159-197.]]Google ScholarGoogle Scholar
  159. ROSENFELD, A., ANO KAK A. 1981. Digital Picture Processing, vols. I and 2. Academic Press, New York.]] Google ScholarGoogle Scholar
  160. ROSENFELD, A. 1984. Image analysis: Problems, progress, and prospects. Pattern Recognition 17, i (Jan.), 3-12.]]Google ScholarGoogle Scholar
  161. SADJADI, F. A., AND HALL, E. L. 1979. Object recognition by three-dimensional moment invariants. In Proceedings of the Pattern Recognition and Image Processing Conference (Chicago, Ill., Aug. 6-8). IEEE, New York, pp. 327-336.]]Google ScholarGoogle Scholar
  162. SADJADI, F. A., AND HALL, E. L. 1980. Three-dimensional moment invariants. IEEE Trans. Pattern Anal. Machine Intell. PAMi-2, 2 (Mar.), 127-136.]]Google ScholarGoogle Scholar
  163. SATO, Y., AND HONDA, I. 1983. Pseudodistance measures for recognition of curved objects. IEEE Trans. Pattern Anal. Machine Intell. PAMi-5, 4 (July), 362-373.]]Google ScholarGoogle Scholar
  164. SATO, Y., KITAGAWA, H., AND FUJITA, H. 1982. Shape measurement of curved objects using multiple slit ray projections. IEEE Trans. Pattern Anal. Machine Intell. PAMI-4, 6 (Nov.), 641-646.]]Google ScholarGoogle Scholar
  165. SCHUDY, R. B., AND BALLARD, D. H. 1978. Modeldetection of cardiac chambers in ultrasound images. TR-12, Computer Science Dept., Univ. of Rochester, Rochester, N.Y. (Nov.).]]Google ScholarGoogle Scholar
  166. SCOTT, R. 1984. Graphics and prediction from models. In Proceedings of the Image Understanding Workshop (New Orleans, La., Oct. 3-4). DARPA, Science Applications, McLean, Va., pp. 98-106.]]Google ScholarGoogle Scholar
  167. SEDERBERG, T. W., AND ANDERSON, D. C. 1985. Steiner surface patches. IEEE Comput. Graphics Appl. 5, 5 (May), 23-36.]]Google ScholarGoogle Scholar
  168. SETHI, I. K., AND JAYARAMAMURTHY, S. N. 1984. Surface classification using characteristic contours. In Proceedings of the 7th International Conference on Pattern Recognition (Montreal, Canada, July 30-Aug. 2). IAPR and IEEE, New York, pp. 438-440.]]Google ScholarGoogle Scholar
  169. SHAFER, S. A., AND KANADE, T. 1983. The theory of straight homogeneous generalized cylinders and taxonomy of generalized cylinders. CMU-CS-83- 105. Carnegie-Mellon Univ., Pittsburgh, Pa. (Jan.).]]Google ScholarGoogle Scholar
  170. SHAPIRA, R., AND FREEMAN, H. 1977a. Reconstruction of curved surface bodies from a set of imperfect projections, in Proceedings of the 5th International Joint Conference on Artificial Intelligence (Cambridge, Mass., Aug. 22-25). IJCAI, pp. 628-634.]]Google ScholarGoogle Scholar
  171. SHAPIRA, R., AND FREEMAN, H. 1977b. A cyclicorder property of bodies with three-face vertices. IEEE Trans. Comput. C-26, 10 (Oct.), 1035-1039.]]Google ScholarGoogle Scholar
  172. SHIRA}, Y., A~D SUWA, M. 1971. Recognition of polyhedra with a range finder. In Proceedings of the 2nd international Joint Conference on Artificial Intelligence (London, U.K., Aug.). IJCAI, pp. 80-87.]]Google ScholarGoogle Scholar
  173. SHN~.IF.R, M. O. 1981. Models and strategies for matching in industrial vision. Computer Science Tech. Rep. TR-1073, Univ. of Maryland, College Park, Md. (July).]]Google ScholarGoogle Scholar
  174. SHOSTAK, R. E. 1977. On the sup-inf method for proving Presburger formulas. J. A CM 24, 529- 543.]] Google ScholarGoogle Scholar
  175. SIGGRAPH '84 Conference Proceedings. 1984. Cornput. Graph. (ACM) 18, 3 (July).]]Google ScholarGoogle Scholar
  176. SILBERBERG, T. M., HARWOOD, D., AND DAVIS, L. S. 1984. Object recognition using oriented model points. In Proceedings of the 1st Artificial Intelligence Applications Conference (Denver, Colo., Dec. 5-7). AAAI and IEEE, New York, pp. 645- 651.]]Google ScholarGoogle Scholar
  177. SMITH, G. B. 1984. A fast surface interpolation technique. In Proceedings of the Image Understanding Workshop (New Orleans, La., Oct. 3-4). DARPA, Science Applications, McLean, Va., pp. 211-215.]]Google ScholarGoogle Scholar
  178. SMITH, D. R., AND KANAO~., T. 1984. Autonomous scene description with range imagery, in Proceedings of the Image Understanding Workshop (New Orleans, La., Oct. 3-4). DARPA, Science Applications, McLean, Va., pp. 282-290.]]Google ScholarGoogle Scholar
  179. SOROKA, B. I., AND BAJCSY, R. K. 1978. A program for describing complex three-dimensional objects using generalized cylinders as primitives. In Proceedings of the Pattern Recognition and Image Processing Conference (Chicago, Ill., June). IEEE, New York, pp. 331-339.]]Google ScholarGoogle Scholar
  180. SPIE 3-D Machine Perception Conference 1981. The Society for Photo-Optical Instrumentation Engineers, vol. 283, Bellingham, Wash.]]Google ScholarGoogle Scholar
  181. STOCKMAN, G., AND ESTEVA, J. C. 1984. Use of geometrical constraints and clustering to determine 3-D object pose. In Proceedings of the 7th International Conference on Pattern Recognition (Montreal, Canada, July 30-Aug. 2). IAPR and IEEE, New York, pp. 742-744.]]Google ScholarGoogle Scholar
  182. SUGIHARA, K. 1979. Range-data analysis guided by junction dictionary. Artificial InteU. 12, 41-69.]]Google ScholarGoogle Scholar
  183. SUTHERLAND, I. E., SPROULL, R. F., AND SUMAKER, R. A. 1974. A characterization of ten hiddensurface algorithms. A CM Comput. Surv. 6, 1 (Mar.), 293-347.]] Google ScholarGoogle Scholar
  184. SVETKOFF, D. J., LEONARD, P. F., SAMPSON, R. E., AND JAIN, R. C. 1984. Techniques for real-time 3D feature extraction using range information. In Proceedings of The Society for Photo-Optical Instrumentation Engineers Conference on Intelligent Robotics and Computer Vision, vol. 521 (Cambridge, Mass., Nov. 5-8). SPIE, Bellingham, Wash.]]Google ScholarGoogle Scholar
  185. THORPE, C., AND SHAFER, S. 1983. Topological correspondence in line drawings of multiple views of objects. CMU-CS-83-113, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa. (Mar.).]]Google ScholarGoogle Scholar
  186. TILLER, W. 1983. Rational B-splines for curve and surface representation. IEEE Comput. Graphics Appl. 3, 6 (Nov.), 61-69.]]Google ScholarGoogle Scholar
  187. TIO, J. B. K., MCPHERSON, C. A., AND HALL, E. L. 1982. Curved surface measurement for robot vision. In Proceedings of the Pattern Recognition and Image Processing Conference (Las Vegas, Nevada, June 14-17). IEEE-CS, New York, pp. 370- 378.]]Google ScholarGoogle Scholar
  188. TERZOPOULOS, D. 1983. Multilevel computational processes for visual surface reconstruction. Cornput. Vision, Graphics, Image Processing 24, 52- 96.]]Google ScholarGoogle Scholar
  189. TROPF, H., AND WALTER, I. 1983. An ATN model for 3-D recognition of solids in single images. In Proceedings of the 8th International Joint Conference on Artificial Intelligence (Karlsruhe, West Germany, Aug. 8-12). IJCAI, pp. 1094-1098.]]Google ScholarGoogle Scholar
  190. UDUPA, K. J., AND MURTHY, I. S. N. 1977. New concepts for three-dimensional shape analysis. IEEE Trans. Comput. C-26, 10 (Oct.), 1043-1049.]]Google ScholarGoogle Scholar
  191. ULLMAN, $. 1979. The Interpretation of Visual Motion. MIT Press, Cambridge, Mass.]]Google ScholarGoogle Scholar
  192. UNDERWOOO, S. A., ANO COATES, C. L., JR. 1975. Visual learning from multiple views. IEEE Trans. Comput. C-24, 6 (June), 651-661.]]Google ScholarGoogle Scholar
  193. VEMURi, B. C., AND AGGARWAL, J. K. 1984. 3-dimensional reconstruction of objects from range data. in Proceedings of the 7th International Conference on Pattern Recognition (Montreal, Canada, July 30-Aug. 2). pp. 752-754.]]Google ScholarGoogle Scholar
  194. WALLACE, T. P., AND WINTZ, P. A. 1980. An efficient three-dimensional aircraft recognition algorithm using normalized Fourier descriptors. Comput. Graphics Image Processing 13, 96-126.]]Google ScholarGoogle Scholar
  195. WALTZ, D. L. 1972. Generating semantic descriptions from drawings of scenes with shadows. Ai- TR-271, MIT Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, Mass., (Nov.).]] Google ScholarGoogle Scholar
  196. WANG, Y. F., MAGGEE, M. J., AND AGGARWAL, J. K. 1984. Matching three-dimensional objects using silhouettes. IEEE Trans. Pattern Anal. Machine InteU. PAMI-6, 4 (July), 513-517.]]Google ScholarGoogle Scholar
  197. WATSON, L. T., LAFFEY, T. J., AND HARALICK, R. M. 1985. Topographic classification of digital iraage intensity surfaces using generalized splines and the discrete cosine transformation. Comput. Vision, Graphics, Image Processing 29, 143-167.]]Google ScholarGoogle Scholar
  198. WITKIN, A. P. 1981. Recovering surface shape and orientation from texture. Artificial Intell. i7 (Aug.), 17-45.]]Google ScholarGoogle Scholar
  199. WONG, R. Y., AND HAYREPETIAN, K. 1982. Image processing with intensity and range data. In Proceedings of the Pattern Recognition and Image Processing Conference (Las Vegas, Nevada, June 14-17). IEEE, New York, pp. 518-520.]]Google ScholarGoogle Scholar
  200. WOODHAM, R. J. 1981. Analysing images of curved surfaces. Artificial InteU. 17, (Aug.), 117-140.]]Google ScholarGoogle Scholar
  201. YAKIMOVSKY, Y., AND CUNNINGHAM, R. 1978. A system for extracting three-dimensional measurements from a stereo pair of TV cameras. Comput. Graphics Image Processing 7, 195-210.]]Google ScholarGoogle Scholar
  202. YORK, B. W., HANSON, A. R., AND RISEMAN, E. M. 1980. A surface representation for computer vision. In Proceedings of the 5th International Conference on Pattern Recognition (Miami, Fla., Dec. 1-4). IAPR and IEEE, New York, pp. 124-129.]]Google ScholarGoogle Scholar
  203. YORK, B. W., HANSON, A. R., AND RISEMAN, E. M. 1981. 3D object representation and matching with B-splines and surface patches. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (Vancouver, B.C., Canada, Aug. 24-28). iJCAI, pp. 648-651.]]Google ScholarGoogle Scholar

Recommendations

Reviews

Leon A. Pintsov

This paper is a survey of mostly recent literature dedicated to the autonomous single arbitrary view, 3D object-recognition problem. The first two sections are concerned with problem definition and mathematical problem formulation. The brief summary of the problem definition is as follows. Given: (1) a collection of labeled solid objects, (2) digitized sensor data corresponding to one arbitrary field of view of the real world, and (3) the list of distinguishable objects, then, for every object from the list, the number of its occurrences in the sensor data along with their 3D locations and orientations (with respect to known coordinate system) have to be found. The mathematical definition of this problem is given for the range and intensity images. In the next two sections, general structure of the object recognition system and characteristics of an ideal system are explained. The largest section of the paper is the literature review, and it is divided into the following subject areas: (1)3D object-representation schemes (2)3D surface-representation schemes (3)3D object- and surface-rendering algorithms (4)Intensity and range image formation (5)Intensity and range image processing (6)3D surface characterization (7)3D object reconstruction algorithms (8)3D object recognition systems using intensity images (9)3D object recognition systems using range images The paper is concluded with several general observations presenting the authors' opinion of the subject and suggestions for the direction of the future research. The list of references contains 202 items. The paper is well written. It presents a wealth of material on the 3D object recognition problem. This paper is a good attempt to develop a consistent and systematic point of view on this difficult and sometimes poorly understood problem. The authors emphasize the lack of universal and reliable criteria to compare different algorithms. They call for “richest descriptions for recognition processes” and “maximum use of the information present in the sensor data.” However, it is not clear at all what “richest,” “maximum us- e,” and “information” mean in this context. Despite a given mathematical definition of the problem the authors do not even try to apply the mathematical technique to quantitatively evaluate the presented algorithms. Perhaps an attempt should be made to develop such a technique in the spirit of recent advances in the theory of optimal algorithms [1]. There are a few minor shortcomings. The mathematical notation in the surface-representation schemes is inconsistent with the notation in the mathematical problem formulation. Several terms are undefined or ambiguous; however, this paper is a survey, and more detailed information can be obtained from the original literature. Overall, this paper is a good guide in the active field, and I would recommend it to professional researchers.

Access critical reviews of Computing literature here

Become a reviewer for Computing Reviews.

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 17, Issue 1
    Annals of discrete mathematics, 24
    March 1985
    140 pages
    ISSN:0360-0300
    EISSN:1557-7341
    DOI:10.1145/4078
    Issue’s Table of Contents

    Copyright © 1985 ACM

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 1 March 1985
    Published in csur Volume 17, Issue 1

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader