skip to main content
article

A combinatorial strongly polynomial algorithm for minimizing submodular functions

Published:01 July 2001Publication History
Skip Abstract Section

Abstract

This paper presents a combinatorial polynomial-time algorithm for minimizing submodular functions, answering an open question posed in 1981 by Grötschel, Lovász, and Schrijver. The algorithm employs a scaling scheme that uses a flow in the complete directed graph on the underlying set with each arc capacity equal to the scaled parameter. The resulting algorithm runs in time bounded by a polynomial in the size of the underlying set and the length of the largest absolute function value. The paper also presents a strongly polynomial version in which the number of steps is bounded by a polynomial in the size of the underlying set, independent of the function values.

References

  1. BIXBY, R. E., CUNNINGHAM,W.H.,AND TOPKIS, D. M. 1985. Partial order of a polymatroid extreme point. Math. Oper. Res. 10, 367-378.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. CUNNINGHAM, W. H. 1984. Testing membership in matroid polyhedra. J. Combinat. Theory B36, 161- 188.]]Google ScholarGoogle ScholarCross RefCross Ref
  3. CUNNINGHAM, W. H. 1985. On submodular function minimization. Combinatorica 5, 185-192.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. CUNNINGHAM,W.H.,AND FRANK, A. 1985. A primal-dual algorithm for submodular flows. Math. Oper. Res. 10, 251-262.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. EDMONDS, J. 1967. Systems of distinct representatives and linear algebra. J. Res. NBS 71B, 241-245.]]Google ScholarGoogle Scholar
  6. EDMONDS, J. 1970. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and Their Applications. R. Guy, H. Hanani, N. Sauer, and J. Schonheim, Eds. Gordon and Breach, pp. 69-87.]]Google ScholarGoogle Scholar
  7. EDMONDS, J., AND GILES, R. 1977. Amin-max relation for submodular functions on graphs. Ann. Discrete Math. 1, 185-204.]]Google ScholarGoogle ScholarCross RefCross Ref
  8. EDMONDS, J., AND KARP, R. 1972. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19, 2 (Apr.), 248-264.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. ERVOLINA,T.R.,AND MCCORMICK, S. T. 1993. Two strongly polynomial cut canceling algorithms for minimum cost network flow. Disc. Appl. Math. 46, 13-165.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. FLEISCHER, L., AND IWATA, S. 2000. Improved algorithms for submodular function minimization and submodular flow. In Proceedings of the 32nd Annual ACMSymposium on Theory of Computing (Portland, Ore., May 21-23). ACM, New York, pp. 107-116.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. FLEISCHER, L., IWATA, S., AND MCCORMICK, S. T. 2001. A faster capacity scaling algorithm for submodular flow. Math. Prog., to appear.]]Google ScholarGoogle Scholar
  12. FRANK, A. 1982. An algorithm for submodular functions on graphs. Ann. Discrete Math. 16, 189-212.]]Google ScholarGoogle Scholar
  13. FRANK, A., AND TARDOS, E. 1987. An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7, 49-65.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. FRANK, A., AND TARDOS, E. 1988. Generalized polymatroids and submodular flows. Math. Prog. 42, 489-563.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. FRANK, A., AND TARDOS, E. 1989. An application of submodular flows. Linear Alg. Appl. 114/115, 329-348.]]Google ScholarGoogle ScholarCross RefCross Ref
  16. FUJISHIGE, S. 1978. Polymatroidal dependence structure of a set of random variables. Inf. Contr. 39, 55-72.]]Google ScholarGoogle ScholarCross RefCross Ref
  17. FUJISHIGE, S. 1980. Lexicographically optimal base of a polymatroid with respect to a weight vector. Math. Oper. Res. 5, 186-196.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. FUJISHIGE, S. 1984a. Submodular systems and related topics. Math. Prog. Study 22, 113-131.]]Google ScholarGoogle ScholarCross RefCross Ref
  19. FUJISHIGE, S. 1984b. Theory of submodular programs: A Fenchel-type min-max theorem and subgradients of submodular functions. Math. Prog. 29, 142-155.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. FUJISHIGE, S. 1991. Submodular Functions and Optimization. North-Holland, Amsterdam, The Netherlands.]]Google ScholarGoogle Scholar
  21. FUJISHIGE, S., AND IWATA, S. 2000. Algorithms for submodular flows. IEICE Trans. Inform. Syst. E83-D, 322-329.]]Google ScholarGoogle Scholar
  22. GOEMANS,M.X.,AND RAMAKRISHNAN, V. S. 1995. Minimizing submodular functions over families of subsets. Combinatorica 15, 499-513.]]Google ScholarGoogle ScholarCross RefCross Ref
  23. GROTSCHEL, M., LOVASZ, L., AND SCHRIJVER, A. 1981. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169-197.]]Google ScholarGoogle ScholarCross RefCross Ref
  24. GROTSCHEL, M., LOVASZ, L., AND SCHRIJVER, A. 1988. Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  25. HAN, T.-S. 1979. The capacity region of general multiple-access channel with correlated sources. Inf. Cont. 40, 37-60.]]Google ScholarGoogle ScholarCross RefCross Ref
  26. HOPPE, B., AND TARDOS, E. 2000. The quickest transshipment problem. Math. Oper. Res. 25, 36-62.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. ITO, H., IWATA, S., AND MUROTA, K. 1994. Block-triangularization of partitioned matrices under similarity/ equivalence transformations. SIAM J. Matrix Anal. Appl. 15, 1226-1255.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. IWATA, S. 1997. A capacity scaling algorithm for convex cost submodular flows. Math. Prog. 76, 299- 308.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. IWATA, S. 2001. A fully combinatorial algorithm for submodular function minimization. J. Combinat. Theory, in press.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. IWATA, S., MCCORMICK,S.T.,AND SHIGENO, M. 1999. A strongly polynomial cut canceling algorithm for the submodular flow problem. In Proceedings of the 7th MPS Conference on Integer Programming and Combinatorial Optimization. Springer-Verlag, Berlin, Germany, pp. 259-272.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. IWATA, S., AND MUROTA, K. 1995. Aminimax theorem and a Dulmage-Mendelsohn type decomposition for a class of generic partitioned matrices. SIAM J. Matrix Anal. Appl. 16, 719-734.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. LOVASZ, L. 1983. Submodular functions and convexity. In Mathematical Programming-The State of the Art, A. Bachem, M. Grotschel and B. Korte, Eds. Springer-Verlag, New York, pp. 235-257.]]Google ScholarGoogle Scholar
  33. NAGAMOCHI, H., AND IBARAKI, T. 1992. Computing edge-connectivity in multigraphs and capacitated graphs. SIAM J. Disc. Math. 5, 54-64.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. NARAYANAN, H. 1995. A rounding technique for the polymatroid membership problem. Linear Alg. Appl. 221, 41-57.]]Google ScholarGoogle ScholarCross RefCross Ref
  35. QUEYRANNE, M. 1998. Minimizing symmetric submodular functions. Math. Prog. 82, 3-12.]]Google ScholarGoogle ScholarCross RefCross Ref
  36. SCHRIJVER, A. 2000. A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combinat. Theory B80, 346-355.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. SHAPLEY, L. S. 1971. Cores of convex games. Int. J. Game Theory 1, 11-26.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. SOHONI, M. A. 1992. Membership in submodular and other polyhedra. Tech. Rep. TR-102-92. Dept. Comput. Sci. Eng., Indian Institute of Technology, Bombay, India.]]Google ScholarGoogle Scholar
  39. TAMIR, A. 1993. A unifying location model on tree graphs based on submodularity properties. Disc. Appl. Math. 47, 275-283.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. TARDOS, E. 1985. A strongly polynomial minimum cost circulation algorithm. Combinatorica 5, 247- 255.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A combinatorial strongly polynomial algorithm for minimizing submodular functions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 48, Issue 4
        July 2001
        303 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/502090
        Issue’s Table of Contents

        Copyright © 2001 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2001
        Published in jacm Volume 48, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader