skip to main content
article

Quantum lower bounds by polynomials

Published:01 July 2001Publication History
Skip Abstract Section

Abstract

We examine the number of queries to input variables that a quantum algorithm requires to compute Boolean functions on {0,1}N in the black-box model. We show that the exponential quantum speed-up obtained for partial functions (i.e., problems involving a promise on the input) by Deutsch and Jozsa, Simon, and Shor cannot be obtained for any total function: if a quantum algorithm computes some total Boolean function f with small error probability using T black-box queries, then there is a classical deterministic algorithm that computes f exactly with O(Ts6) queries. We also give asymptotically tight characterizations of T for all symmetric f in the exact, zero-error, and bounded-error settings. Finally, we give new precise bounds for AND, OR, and PARITY. Our results are a quantum extension of the so-called polynomial method, which has been successfully applied in classical complexity theory, and also a quantum extension of results by Nisan about a polynomial relationship between randomized and deterministic decision tree complexity.

References

  1. ALONSO, L., REINGOLD,E.M.,AND SCHOTT, R. 1993. Determining the majority. Inf. Proc. Lett. 47,5, 253-255.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. AMBAINIS, A. 1999. A note on quantum black-box complexity of almost all Boolean functions. Inf. Proc. Lett. 71, 1, 5-7. (Also available at http://xxx.lanl.gov/abs/quant-ph/9811080.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. AMBAINIS, A. 2000. Quantum lower bounds by quantum arguments. In Proceedings of 32nd Annual ACM Symposium on Theory of Computing (Portland, Ove., May 21-23). ACM, New York, pp. 636-643. (quant-ph/0002066.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. BEALS, R., BUHRMAN, H., CLEVE, R., MOSCA, M., AND DE WOLF, R. 1998. Quantum lower bounds by polynomials. In Proceedings of 39th Annual IEEE Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 352-361. (quant-ph/9802049.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. BEIGEL, R. 1993. The polynomial method in circuit complexity. In Proceedings of the 8th IEEE Structure in Complexity Theory Conference. IEEE Computer Society Press, Los Alamitos, Calif., pp. 82- 95.]]Google ScholarGoogle ScholarCross RefCross Ref
  6. BENNETT, C. H., BERNSTEIN, E., BRASSARD, G., AND VAZIRANI, U. 1997. Strengths and weaknesses of quantum computing. SIAM J. Comput, 26, 5, 1510-1523. (quant-ph/9701001.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. BONEH, D., AND LIPTON, R. J. 1995. Quantum cryptanalysis of hidden linear functions (extended abstract). In Advances in Cryptology (CRYPTO'95). Lecture Notes in Computer Science, vol. 963. Springer- Verlag, New York, pp. 424-437.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. BOYER, M., BRASSARD, G., H~YER,P.,AND TAPP, A. 1998. Tight bounds on quantum searching. Fortschritte der Physik 46, 4-5, 493-505. (quant-ph/9605034.)]]Google ScholarGoogle ScholarCross RefCross Ref
  9. BRASSARD, G., AND H~YER, P. 1997. An exact quantum polynomial-time algorithm for Simon's problem. In Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems (ISTCS'97). IEEE Computer Society Press, Los Alamitos, Calif., pp. 12-23. (quant-ph/9704027.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. BRASSARD, G., H~YER, P., MOSCA, M., AND TAPP, A. 2000. Quantum amplitude amplification and estimation. In Quantum Computation and Quantum Information: A Millenium Volume. AMS Contemporary Mathematics Series.]]Google ScholarGoogle Scholar
  11. BRASSARD, G., H~YER,P.,AND TAPP, A. 1997. Quantum algorithm for the collision problem. ACM SIGACT News (Cryptology Column) 28, 14-19. (quant-ph/9705002.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. BRASSARD, G., H~YER,P.,AND TAPP, A. 1998. Quantum counting. In Proceedings of 25th International Colloquium on Automata Languages and Programming. Lecture Notes in Computer Science, vol. 1443. Springer-Verlag, New York, pp. 820-831. (quant-ph/9805082.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. BUHRMAN, H., CLEVE, R., AND WIGDERSON, A. 1998. Quantum vs. classical communication and computation. In Proceedings of 30th Annual ACM Symposium on Theory of Computing (Dallas, Tex., May 23-26). ACM, New York, pp. 63-68. (quant-ph/9802040.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. BUHRMAN, H., CLEVE, R., DE WOLF, R., AND ZALKA,CH. 1999. Bounds for small-error and zeroerror quantum algorithms. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 358-368. (cs.CC/9904019.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. BUHRMAN, H., D~RR, C., HEILIGMAN, M., H~YER, P., MAGNIEZ, F., SANTHA, M., AND DE WOLF, R. 2001. Quantum algorithms for element distinctness. In Proceedings of 16th IEEE Conference on Computational Complexity. IEEE Computer Society Press, Los Alamitos, Calif., pp. 131-137. (quant-ph/0007016.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. BUHRMAN, H., AND DE WOLF, R. 2001. Complexity measures and decision tree complexity: A survey. Theoret. Comput. Sci. To appear.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. CLEVE, R. 2000. The query complexity of order-finding. In Proceedings of 15th IEEE Conference on Computational Complexity. IEEE Computer Society Press, Los Alamitos, Calif., pp. 54-59. (quantph/9911124.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. CLEVE, R., EKERT, A., MACCHIAVELLO, C., AND MOSCA, M. 1998. Quantum algorithms revisited. Proc. Roy. Soc. London A454, 339-354. (quant-ph/9708016.)]]Google ScholarGoogle ScholarCross RefCross Ref
  19. VAN,DAM, W. 1998. Quantum oracle interrogation: Getting all information for almost half the price. In Proceedings of 39th IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 362-367. (quant-ph/9805006.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. VAN DAM W., AND HALLGREN, S. 2000. Efficient quantum algorithms for shifted quadratic character problems. (quant-ph/0011067.)]]Google ScholarGoogle Scholar
  21. DEUTSCH, D., AND JOZSA, R. 1992. Rapid solution of problems by quantum computation. Proc. Roy. Soc. London A439, 553-558.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. EHLICH, H., AND ZELLER, K. 1964. Schwankung von Polynomen zwischen Gitterpunkten. Math. Z. 86, 41-44.]]Google ScholarGoogle ScholarCross RefCross Ref
  23. FARHI, E., GOLDSTONE, J., GUTMANN, S., AND SIPSER, M. 1998. A limit on the speed of quantum computation in determining parity. Phys. Rev. Lett. 81, 5442-5444.]]Google ScholarGoogle ScholarCross RefCross Ref
  24. FARHI, E., GOLDSTONE, J., GUTMANN, S., AND SIPSER, M. 1999a. How many functions can be distinguished with k quantum queries? Phys. Rev. A 60, 6, 4331-4333. (quant-ph/9901012.)]]Google ScholarGoogle ScholarCross RefCross Ref
  25. FARHI, E., GOLDSTONE, J., GUTMANN, S., AND SIPSER, M. 1999b. Invariant quantum algorithms for insertion into an ordered list. (quant-ph/9901059.)]]Google ScholarGoogle Scholar
  26. FENNER, S., FORTNOW, L., KURTZ, S., AND LI, L. 1993. An oracle builder's toolkit. In Proceedings of the 8th IEEE Structure in Complexity Theory Conference. IEEE Computer Society Press, Los Alamitos, Calif., pp. 120-131.]]Google ScholarGoogle ScholarCross RefCross Ref
  27. FORTNOW, L., AND ROGERS, J. 1999. Complexity limitations on quantum computation. J. Comput. Syst. Sci. 59, 2, 240-252. Conference version in Proceedings of the 13th IEEE conference on Computational Complexity, 1998. (cs.CC/9811023.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. VON ZUR GATHEN, J., AND ROCHE, J. R. 1997. Polynomials with two values. Combinatorica 17,3, 345-362.]]Google ScholarGoogle ScholarCross RefCross Ref
  29. GROVER, L. K. 1996. A fast quantum mechanical algorithm for database search. In Proceedings of 28th Annual ACM Symposium on Theory of Computing (Philadelphia, Pa., May 22-24). ACM, New York, pp. 212-219. (quant-ph/9605043.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. GROVER, L. K. 1998. A framework for fast quantum mechanical algorithms. In Proceedings of 30th Annual ACM Symposium on Theory of Computing (Dallas, Tex., May 23-26). ACM, New York, pp. 53-62. (quant-ph/9711043.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. HAYES, T., KUTIN, S., AND VAN MELKEBEEK, D. 1998. On the quantum complexity of majority. Tech. Rep. TR-98-11. Computer Science Department, Univ. Chicago, Chicago, Ill.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. HOYER, P. 1999. Conjugated operators in quantum algorithms. Phys. Rev. A 59, 5, 3280-3289.]]Google ScholarGoogle ScholarCross RefCross Ref
  33. HOYER, P., NEERBEK, J., AND SHI, Y. 2001. Quantum bounds for ordered searching and sorting. In Proceedings of 28th International Colloquium on Antomata Languages and Programming. Lecture Notes in Computer Science, vol. 2076. Springer-Verlag, New York, pp. 346-357. (quant-ph/0102078.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. JOZSA, R. 1991. Characterizing classes of functions computable by quantum parallelism. Proc. Roy. Soc. London A435, 563-574.]]Google ScholarGoogle ScholarCross RefCross Ref
  35. KITAEV, A. Y. 1995. Quantum measurements and the Abelian stabilizer problem. (quant-ph/9511026.)]]Google ScholarGoogle Scholar
  36. MINSKY, M., AND PAPERT, S. 1968. Perceptrons. MIT Press, Cambridge, Mass., Second, expanded edition 1988.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. MOSCA, M. 1998. Quantum searching, counting and amplitude amplification by eigenvector analysis. In MFCS'98 Workshop on Randomized Algorithms, pp. 90-100.]]Google ScholarGoogle Scholar
  38. MOSCA, M., AND EKERT, A. 1998. The hidden subgroup problem and eigenvalue estimation on a quantum computer. In Proceedings of 1st NASA Quantum Computing and Quantum Communications Confer-ence. Lecture Notes in Computer Science, vol. 1509. Springer-Verlag, New York, pp. 174-188. (quant-ph/ 9903071.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. NAYAK, A., AND WU, F. 1999. The quantum query complexity of approximating the median and related statistics. In Proceedings of 31st Annual ACM Symposium on Theory of Computing (Atlanta, Ga., May 1-4). ACM, New York, pp. 384-393. (quant-ph/9804066.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. NIELSEN,M.A.,AND CHUANG, I. L. 2000. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, Mass.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. NISAN, N. 1991. CREW PRAMs and decision trees. SIAM J. Comput. 20, 6, 999-1007.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. NISAN, N., AND SZEGEDY, M. 1994. On the degree of Boolean functions as real polynomials. Computat. Complex. 4, 4, 301-313.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. OZHIGOV, Y. 1998. Quantum computer can not speed up iterated applications of a black box. In Proceedings of 1st NASA QCQC conference. Lecture Notes in Computer Science vol. 1509. Springerverlag, New York. (quant-ph/9712051.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. PATURI, R. 1992. On the degree of polynomials that approximate symmetric Boolean functions (preliminary version). In Proceedings of 24th Annual ACMSymposium on Theory of Computing (Victoria, B.C., Canada, May 4-6). ACM, New York, pp. 468-474.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. RIVLIN,T.J.,AND CHENEY, E. W. 1966. A comparison of uniform approximations on an interval and a finite subset thereof. SIAM J. Numer. Anal. 3, 2, 311-320.]]Google ScholarGoogle ScholarCross RefCross Ref
  46. SAKS, M., AND WIGDERSON, A. 1986. Probabilistic Boolean decision trees and the complexity of evaluating game trees. In Proceedings of 27th IEEE Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 29-38.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. SAKS, M. E., AND WERMAN, M. 1991. On computing majority by comparisons. Combinatorica 11,4, 383-387.]]Google ScholarGoogle ScholarCross RefCross Ref
  48. SANTHA, M. 1991. On the Monte Carlo decision tree complexity of read-once formulae. In Proceedings of the 6th IEEE Structure in Complexity Theory Conference. IEEE Computer Society Press, Los Alamitos, Calif., pp. 180-187.]]Google ScholarGoogle ScholarCross RefCross Ref
  49. SCHONING, U. 1999. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Proceedings of 40th IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 410-414.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. SERVEDIO,R.A.,AND GORTLER, S. J. 2001. Quantum versus classical learnability. In Proceedings of the 16th IEEE Conference on Computational Complexity. IEEE Computer Society Press, Los Alamitos, Calif., pp. 138-148. (quant-ph/0007036.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. SHOR, P. W. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM. J. Comput. 26, 5, 1484-1509. (quant-ph/9508027.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. SIMON, D. 1997. On the power of quantum computation. SIAM J. Comput. 26, 5, 1474-1483.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. VAZIRANI, U. 1998. On the power of quantum computation. Proc. Roy. Soc. London A356. 1759-1768.]]Google ScholarGoogle Scholar
  54. DE WOLF, R. 2000. Characterization of non-deterministic quantum query and quantum communication complexity. In Proceedings of 15th IEEE Conference on Computational Complexity. IEEE Computer Society Press, Los Alamitos, Calif., pp. 271-278. (cs.CC/0001014.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. ZALKA,CH. 1999. Grover's quantum searching algorithm is optimal. Phys. Rev. A 60, 2746-2751. (quant-ph/9711070.)]]Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Quantum lower bounds by polynomials

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Journal of the ACM
          Journal of the ACM  Volume 48, Issue 4
          July 2001
          303 pages
          ISSN:0004-5411
          EISSN:1557-735X
          DOI:10.1145/502090
          Issue’s Table of Contents

          Copyright © 2001 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2001
          Published in jacm Volume 48, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader