skip to main content
article

Multiresolution green's function methods for interactive simulation of large-scale elastostatic objects

Authors Info & Claims
Published:01 January 2003Publication History
Skip Abstract Section

Abstract

We present a framework for low-latency interactive simulation of linear elastostatic models, and other systems arising from linear elliptic partial differential equations, which makes it feasible to interactively simulate large-scale physical models. The deformation of the models is described using precomputed Green's functions (GFs), and runtime boundary value problems (BVPs) are solved using existing Capacitance Matrix Algorithms (CMAs). Multiresolution techniques are introduced to control the amount of information input and output from the solver thus making it practical to simulate and store very large models. A key component is the efficient compressed representation of the precomputed GFs using second-generation wavelets on surfaces. This aids in reducing the large memory requirement of storing the dense GF matrix, and the fast inverse wavelet transform allows for fast summation methods to be used at run-time for response synthesis. Resulting GF compression factors are directly related to interactive simulation speedup, and examples are provided with hundredfold improvements at modest error levels. We also introduce a multiresolution constraint satisfaction technique formulated as a hierarchical CMA, so named because of its use of hierarchical GFs describing the response due to hierarchical basis constraints. This direct solution approach is suitable for hard real-time simulation since it provides a mechanism for gracefully degrading to coarser resolution constraint approximations. The GFs' multiresolution displacement fields also allow for run-time adaptive multiresolution rendering.

References

  1. Alpert, B., Beylkin, G., Coifman, R., and Rokhlin, V. 1993. Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Comput. 14, 1 (Jan.), 159--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ascher, U. M. and Petzold, L. R. 1998. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia. Google ScholarGoogle Scholar
  3. Astley, O. and Hayward, V. 1998. Multirate haptic simulation achieved by coupling finite element meshes through Norton equivalents. In Proceedings of the IEEE International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  4. Balaniuk, R. 2000. Building a haptic interface based on a buffer model. In Proceedings of the IEEE International Conference on Robotics and Automation (San Francisco).Google ScholarGoogle Scholar
  5. Baraff, D. and Witkin, A. 1992. Dynamic simulation of non-penetrating flexible bodies. In Computer Graphics (SIGGRAPH 92 Conference Proceedings), 303--308. Google ScholarGoogle Scholar
  6. Baraff, D. and Witkin, A. 1998. Large steps in cloth simulation. In SIGGRAPH 98 Conference Proceedings, 43--54. Google ScholarGoogle Scholar
  7. Barber, J. R. 1992. Elasticity, first ed. Kluwer, Dordrecht.Google ScholarGoogle Scholar
  8. Basdogan, C. 2001. Real-time simulation of dynamically deformable finite element models using modal analysis and spectral Lanczos decomposition methods. In Proceedings of the Medicine Meets Virtual Reality (MMVR'2001) Conference, 46--52.Google ScholarGoogle Scholar
  9. Berkley, J., Weghorst, S., Gladstone, H., Raugi, G., Berg, D., and Ganter, M. 1999. Fast finite element modeling for surgical simulation. In Proceedings of Medicine Meets Virtual Reality, 55--61.Google ScholarGoogle Scholar
  10. Beylkin, G. 1992. On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal. 29, 6 (Dec.), 1716--1740. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Beylkin, G., Coifman, R., and Rokhlin, V. 1991a. Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 44, 141--183.Google ScholarGoogle ScholarCross RefCross Ref
  12. Beylkin, G., Coifman, R., and Rokhlin, V. 1991b. Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math. 44, 141--183.Google ScholarGoogle ScholarCross RefCross Ref
  13. Brebbia, C. A., Telles, J. C. F., and Wrobel, L. C. 1984. Boundary Element Techniques: Theory and Applications in Engineering, second ed. Springer-Verlag, New York.Google ScholarGoogle Scholar
  14. Bro-Nielsen, M. and Cotin, S. 1996. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15, 3 (Aug.), 57--66.Google ScholarGoogle ScholarCross RefCross Ref
  15. Çavuşoğlu, M. C. and Tendick, F. 2000. Multirate simulation for high fidelity haptic interaction with deformable objects in virtual environments. In Proceedings of the IEEE International Conference on Robotics and Automation (San Francisco).Google ScholarGoogle Scholar
  16. Cotin, S., Delingette, H., and Ayache, N. 1999. Realtime elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph. 5, 1, 62--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Cyberware. Available at http://www.cyberware.com.Google ScholarGoogle Scholar
  18. Dahmen, W. 1996. Stability of multiscale transformations. J. Fourier Anal. Appl. 4, 341--362.Google ScholarGoogle Scholar
  19. Daubechies, I. and Sweldens, W. 1996. Factoring wavelet transforms into lifting steps. Tech. Rep. Bell Laboratories, Lucent Technologies.Google ScholarGoogle Scholar
  20. Debunne, G., Desbrun, M., Barr, A., and Cani, M.-P. 2001. Dynamic real-time deformations using space and time adaptive sampling. In Computer Graphics (SIGGRAPH 2001 Conference Proceedings). Google ScholarGoogle Scholar
  21. Desbrun, M., Schröder, P., and Barr, A. 1999. Interactive animation of structured deformable objects. In Proceedings of Graphics Interface, 1--8. Google ScholarGoogle Scholar
  22. DeVore, R., Jawerth, B., and Lucier, B. 1992. Image compression through wavelet transform coding. IEEE Trans. Inf. Theor. 38, 719--746.Google ScholarGoogle ScholarCross RefCross Ref
  23. Dyn, N., Levin, D., and Gregory, J. A. 1990. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9, 2 (Apr.), 160--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. Comput. Graph. 29, Annual Conference Series, 173--182. Google ScholarGoogle Scholar
  25. Ezawa, Y. and Okamoto, N. 1989. High-speed boundary element contact stress analysis using a super computer. In Proceedings of the Fourth International Conference on Boundary Element Technology, 405--416.Google ScholarGoogle Scholar
  26. Gibson, S. F. and Mirtich, B. 1997. A survey of deformable models in computer graphics. Tech. Rep. TR-97-19, Mitsubishi Electric Research Laboratories, Cambridge, Mass. November.Google ScholarGoogle Scholar
  27. Golub, G. H. and Loan, C. F. V. 1996. Matrix Computations, third ed. Johns Hopkins University Press, Baltimore. Google ScholarGoogle Scholar
  28. Gortler, S. J., Schröder, P., Cohen, M. F., and Hanrahan, P. 1993. Wavelet radiosity. In Computer Graphics Proceedings, Annual Conference Series, 221--230. Google ScholarGoogle Scholar
  29. Greengard, L. and Rokhlin, V. 1987. A fast algorithm for particle simulations. J. Comput. Phys. 73, 325--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Guskov, I., Vidimce, K., Sweldens, W., and Schröder, P. 2000. Normal meshes. In SIGGRAPH 2000 Conference Proceedings, K. Akeley, Ed., Annual Conference Series. ACM Press/ACM SIGGRAPH/Addison Wesley Longman, Reading, Mass., 95--102. Google ScholarGoogle Scholar
  31. Hackbusch, W. 1985. Multi-Grid Methods and Applications. Springer, Berlin.Google ScholarGoogle Scholar
  32. Hackbusch, W. and Nowak, Z. P. 1989. On the fast matrix multiplication in the boundary element method by panel clustering. Numerische Mathematik 54, 4, 463--491.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Hager, W. W. 1989. Updating the inverse of a matrix. SIAM Rev. 31, 2 (June), 221--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Hartmann, F. 1985. The mathematical foundation of structural mechanics. Springer-Verlag, New York.Google ScholarGoogle Scholar
  35. Hauth, M. and Etzmuss, O. 2001. A high performance solver for the animation of deformable objects using advanced numerical methods. In Proceedings of Eurographics 2001 (to appear).Google ScholarGoogle Scholar
  36. Hirota, K. and Kaneko, T. 1998. Representation of soft objects in virtual environments. In Proceedings of the Second International Conference on Artificial Reality and Tele-Existence.Google ScholarGoogle Scholar
  37. James, D. L. 2001. Multiresolution Green's function methods for interactive simulation of large-scale elastostatic objects and other physical systems in equilibrium. Ph.D. Thesis, Institute of Applied Mathematics, University of British Columbia, Vancouver, British Columbia, Canada. Google ScholarGoogle Scholar
  38. James, D. L. and Pai, D. K. 1999. ArtDefo: Accurate real time deformable objects. Comput. Graph. 33, Annual Conference Series, 65--72. Google ScholarGoogle Scholar
  39. James, D. L. and Pai, D. K. 2001. A unified treatment of elastostatic contact simulation for real time haptics. Haptics-e, Elect. J. Haptics Res. 2, 1 (Sept.). Available at www.haptics-e.org.Google ScholarGoogle Scholar
  40. James, D. L. and Pai, D. K. 2002a. DyRT: Dynamic response textures for real time deformation simulation with graphics hardware. In SIGGRAPH 2002 Conference Proceedings. Annual Conference Series. ACM Press/ACM SIGGRAPH (to appear). Google ScholarGoogle Scholar
  41. James, D. L. and Pai, D. K. 2002b. Real time simulation of multizone elastokinematic models. In Proceedings of the IEEE International Conference on Robotics and Automation (Washington, DC), 927--932.Google ScholarGoogle Scholar
  42. Jaswon, M. A. and Symm, G. T. 1977. Integral Equation Methods in Potential Theory and Elastostatics. Academic, New York.Google ScholarGoogle Scholar
  43. Kang, Y.-M., Choi, J.-H., Cho, H.-G., Lee, D.-H., and Park, C.-J. 2000. Real-time animation technique for flexible and thin objects. In Proceedings of WSCG, 322--329.Google ScholarGoogle Scholar
  44. Kassim, A. M. A. and Topping, B. H. V. 1987. Static reanalysis: A review. J. Struct. Eng. 113, 1029--1045.Google ScholarGoogle ScholarCross RefCross Ref
  45. Kellogg, O. D. 1929. Foundations of Potential Theory. Springer, Berlin.Google ScholarGoogle Scholar
  46. Khodakovsky, A., Schröder, P., and Sweldens, W. 2000. Progressive geometry compression. In SIGGRAPH 2000 Conference Proceedings, K. Akeley, Ed., Annual Conference Series. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, Reading, Mass., 271--278. Google ScholarGoogle Scholar
  47. Kolarov, K. and Lynch, W. 1997. Compression of functions defined on the surface of 3D objects. In Proceedings of Data Compression Conference, J. Storer and M. Cohn, Eds., IEEE Computer Society Press, Los Almitos, Calif., 281--291. Google ScholarGoogle Scholar
  48. Krishnamurthy, V. and Levoy, M. 1996. Fitting smooth surfaces to dense polygon meshes. Comput. Graph. 30, Annual Conference Series, 313--324. Google ScholarGoogle Scholar
  49. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Meth. Eng. 51, 479--504.Google ScholarGoogle ScholarCross RefCross Ref
  50. Kühnapfel, U., Çakmak, H., and Maass, H. 1999. 3D modeling for endoscopic surgery. In Proceedings of IEEE Symposium on Simulation (Delft University, Delft, NL), 22--32.Google ScholarGoogle Scholar
  51. Lang, J. 2001. Deformable model acquisition and verification. PhD Thesis, Department of Computer Science, University of British Columbia. Google ScholarGoogle Scholar
  52. Lee, A., Moreton, H., and Hoppe, H. 2000. Displaced subdivision surfaces. In SIGGRAPH 2000 Conference Proceedings, 85--94. Google ScholarGoogle Scholar
  53. Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: Multiresolution adaptive parameterization of surfaces. In SIGGRAPH 98 Conference Proceedings, 95--104. Google ScholarGoogle Scholar
  54. Loop, C. 1987. Smooth subdivision surfaces based on triangles. MS Thesis, University of Utah, Department of Mathematics.Google ScholarGoogle Scholar
  55. Lounsbery, M., DeRose, T. D., and Warren, J. 1997. Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph. 16, 1 (Jan.), 34--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Man, K. W., Aliabadi, M. H., and Rooke, D. P. 1993. Analysis of contact friction using the boundary element method. In Computational Methods in Contact Mechanics, M. H. Aliabadi and C. A. Brebbia, Eds. Computational Mechanics and Elsevier Applied Science, New York, Chapter 1, 1--60.Google ScholarGoogle Scholar
  57. Morgenbesser, H. B. and Srinivasan, M. A. 1996. Force shading for haptic shape perception. In Proceedings of the ASME Dynamics Systems and Control Division, vol. 58.Google ScholarGoogle Scholar
  58. Pai, D. K., van den Doel, K., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3D objects. In SIGGRAPH 2001 Conference Proceedings, ACM SIGGRAPH, New York. Google ScholarGoogle Scholar
  59. Paraform. Available at http://www.paraform.com.Google ScholarGoogle Scholar
  60. Pentland, A. and Williams, J. 1989. Good vibrations: Modal dynamics for graphics and animation. Computer Graphics (Proceedings of SIGGRAPH 89) 23, 3, (Boston, July), 215--222. Google ScholarGoogle Scholar
  61. Picinbono, G., Delingette, H., and Ayache, N. 2001. Non-linear and anisotropic elastic soft tissue models for medical simulation. In Proceedings of IEEE International Conference on Robotics and Automation (Seoul, Korea).Google ScholarGoogle Scholar
  62. Proskurowski, W. and Widlund, O. 1980. A finite element-capacitance matrix method for the Neumann problem for Laplace's equation. SIAM J. Sci. Stat. Comput. 1, 4 (Dec.), 410--425.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Raindrop Geomagic, Inc. Available at http://www.geomagic.com.Google ScholarGoogle Scholar
  64. Reachin. Available at http://www.reachin.se.Google ScholarGoogle Scholar
  65. Said, A. and Pearlman, W. A. 1996. A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circ. Syst. Video Technol. 6, 243--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Schröder, P. and Sweldens, W. 1995a. Spherical wavelets: Efficiently representing functions on the sphere. In Computer Graphics (Proceedings of SIGGRAPH 95). ACM SIGGRAPH, New York, 161--172. Google ScholarGoogle Scholar
  67. Schröder, P. and Sweldens, W. 1995b. Spherical wavelets: Texture processing. In Rendering Techniques '95 (Proceedings of the Sixth Eurographics Workshop on Rendering), P. M. Hanrahan and W. Purgathofer, Eds., Springer-Verlag, New York, 252--263.Google ScholarGoogle Scholar
  68. Shapiro, J. M. 1993. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Acoustics, Speech Signal Process. 41, 12, 3445--3462.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Stam, J. 1997. Stochastic dynamics: Simulating the effects of turbulence on flexible structures. Comput. Graph. Forum (EUROGRAPHICS 2001 Proceedings) 16, 3.Google ScholarGoogle Scholar
  70. Sweldens, W. 1998. The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal. 29, 2 (Mar.), 511--546. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Székely, G., Brechböhler, C., Dual, J., Enzler, R., Hug, J., Hutter, R., Ironmonger, N., Kauer, M., Meier, V., Niederer, P., Romberg, A., Schmid, P., Schweitzer, G., Thaler, M., Vuskovic, V., Tröster, G., Haller, U., and Bajka, M. 2000. Virtual reality-based simulation of endoscopic surgery. Presence 9, 3 (June), 310--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Terzopoulos, D. and Fleischer, K. 1988. Deformable models. Vis. Comput. 4, 306--331.Google ScholarGoogle ScholarCross RefCross Ref
  73. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Comput. Graph. (Proceedings of SIGGRAPH 87), M. C. Stone, Ed, ACM, New York, 205--214. Google ScholarGoogle Scholar
  74. van den Doel, K. and Pai, D. K. 1998. The sounds of physical shapes. Presence 7, 4, 382--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Weimer, H. and Warren, J. 1998. Subdivision schemes for thin plate splines. Comput. Graph. Forum 17, 3, 303--314.Google ScholarGoogle ScholarCross RefCross Ref
  76. Weimer, H. and Warren, J. 1999. Subdivision schemes for fluid flow. In SIGGRAPH 1999 Conference Proceedings, A. Rockwood, Ed, Addison Wesley Longman, Los Angeles, 111--120. Google ScholarGoogle Scholar
  77. Wu, X., Downes, M., Goktekin, T., and Tendick, F. 2001. Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. In Eurographics 2001, A. Chalmers and T.-M. Rhyne, Eds.Google ScholarGoogle Scholar
  78. Xia, J. C., El-Sana, J., and Varshney, A. 1997. Adaptive real-time level-of-detail-based rendering for polygonal models. IEEE Trans. Vis. Comput. Graph. 3, 2, 171--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Yoshida, K., Nishimura, N., and Kobayashi, S. 2001. Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D. Int. J. Numer. Meth. Eng. 50, 525--547.Google ScholarGoogle ScholarCross RefCross Ref
  80. Yserentant, H. 1986. On the multilevel splitting of finite element spaces. Numer. Math. 49, 379--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Zhuang, Y. and Canny, J. 2000. Haptic interaction with global deformations. In Proceedings of the IEEE International Conference on Robotics and Automation (San Francisco).Google ScholarGoogle Scholar
  82. Zienkiewicz, O. C. 1977. The Finite Element Method. McGraw-Hill, Maidenhead, Berkshire, England.Google ScholarGoogle Scholar
  83. Zilles, C. B. and Salisbury, J. K. 1994. A constraint-based god-object method for haptic display. In ASME Haptic Interfaces for Virtual Environment and Teleoperator Systems, vol. 1 (Chicago), 149--150.Google ScholarGoogle Scholar
  84. Zorin, D. and Schröder, P., Eds. 2000. Course notes: Subdivision for modeling and animation. ACM SIGGRAPH, New York.Google ScholarGoogle Scholar

Index Terms

  1. Multiresolution green's function methods for interactive simulation of large-scale elastostatic objects

                          Recommendations

                          Comments

                          Login options

                          Check if you have access through your login credentials or your institution to get full access on this article.

                          Sign in

                          Full Access

                          • Published in

                            cover image ACM Transactions on Graphics
                            ACM Transactions on Graphics  Volume 22, Issue 1
                            January 2003
                            129 pages
                            ISSN:0730-0301
                            EISSN:1557-7368
                            DOI:10.1145/588272
                            Issue’s Table of Contents

                            Copyright © 2003 ACM

                            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                            Publisher

                            Association for Computing Machinery

                            New York, NY, United States

                            Publication History

                            • Published: 1 January 2003
                            Published in tog Volume 22, Issue 1

                            Permissions

                            Request permissions about this article.

                            Request Permissions

                            Check for updates

                            Qualifiers

                            • article

                          PDF Format

                          View or Download as a PDF file.

                          PDF

                          eReader

                          View online with eReader.

                          eReader