skip to main content
article

The height of a random binary search tree

Authors Info & Claims
Published:01 May 2003Publication History
Skip Abstract Section

Abstract

Let Hn be the height of a random binary search tree on n nodes. We show that there exist constants α = 4.311… and β = 1.953… such that E(Hn) = αln n − βln ln n + O(1), We also show that Var(Hn) = O(1).

References

  1. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. 1975. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass. Google ScholarGoogle Scholar
  2. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. 1983. Data Structures and Algorithms, Addison-Wesley, Reading, Mass. Google ScholarGoogle Scholar
  3. Chernoff, H. 1952. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493--507.Google ScholarGoogle Scholar
  4. Devroye, L. 1986. A note on the height of binary search trees. J. ACM 33, 489--498. Google ScholarGoogle Scholar
  5. Devroye, L. 1987. Branching processes in the analysis of the heights of trees. Acta Inf. 24, 277--298. Google ScholarGoogle Scholar
  6. Devroye, L. 1990. On the height of random m-ary search trees. Rand. Struct. Algorithms 1, 191--203.Google ScholarGoogle Scholar
  7. Devroye, L., and Reed, B. 1995. On the variance of the height of random binary search trees. SIAM J. Comput. 24, 1107--1112. Google ScholarGoogle Scholar
  8. Drmota, M. 2003. An analytic approach to the height of binary search trees II. J. ACM 50, 3 (May), 333--374. Google ScholarGoogle Scholar
  9. Knuth, D. E. 1973a. The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison-Wesley, Reading, Mass., 2nd ed. Google ScholarGoogle Scholar
  10. Knuth, D. E. 1973b. The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison-Wesley, Reading, Mass. Google ScholarGoogle Scholar
  11. Mahmoud, H. M. 1992. Evolution of Random Search Trees. John Wiley, New York.Google ScholarGoogle Scholar
  12. Mahmoud, H., and Pittel, B. 1994. On the most probable shape of a search tree grown from a random permutation. SIAM J. Algeb. Disc. Meth. 5, 69--81.Google ScholarGoogle Scholar
  13. Pittel, B. 1984. On growing random binary trees. J. Math. Anal. Appl. 103, 461--480.Google ScholarGoogle Scholar
  14. Pittel, B. 1994. Note on the heights of random recursive trees and random m-ary search trees. Rand. Struct. Algorithms 5, 337--347.Google ScholarGoogle Scholar
  15. Pyke, R. 1965. Spacings. J. Roy. Stat. Soc., Ser., B 7, 395--445.Google ScholarGoogle Scholar
  16. Robson, J. M. 1979. The height of binary search trees. Austral. Comput. J. 11, 151--153.Google ScholarGoogle Scholar
  17. Robson, J. M. 1982. The asymptotic behaviour of the height of binary search trees. Austral. Comput. Sci. Commun. p. 88.Google ScholarGoogle Scholar
  18. Shorack, G., and Wellner, J. 1986. Empirical Processes with Applications to Statistics. Wiley, New York.Google ScholarGoogle Scholar

Index Terms

  1. The height of a random binary search tree

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader