skip to main content
article

GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi

Authors Info & Claims
Published:01 June 2003Publication History
Skip Abstract Section

Abstract

GloptiPoly is a Matlab/SeDuMi add-on to build and solve convex linear matrix inequality relaxations of the (generally nonconvex) global optimization problem of minimizing a multivariable polynomial function subject to polynomial inequality, equality, or integer constraints. It generates a series of lower bounds monotonically converging to the global optimum without any problem splitting. Global optimality is detected and isolated optimal solutions are extracted automatically. Numerical experiments show that for most of the small-scale problems described in the literature, the global optimum is reached at low computational cost.

References

  1. Anjos, M. 2001. New convex relaxations for the maximum cut and VLSI layout problems. Ph.D. dissertation. Waterloo University, Waterloo, Ont., Canada. See orion.math.uwaterloo.ca/∼hwolkowi.Google ScholarGoogle Scholar
  2. Ben-Saad, S. 1989. An algorithm for a class of nonlinear nonconvex optimization problems. Ph.D. dissertation. University of California, Los Angeles, CA.Google ScholarGoogle Scholar
  3. Bondyfalat, D., Mourrain, B., and Pan, V. Y. 2000. Computation of a specified root of a polynomial system of equations using eigenvectors. Linear Algebra and its Applications, 319, 1--3, 193--209.Google ScholarGoogle Scholar
  4. Corless, R. M., Gianni, P. M., and Trager, B. M. 1997. A reordered schur factorization method for zero-dimensional polynomial systems with multiple roots. In Proceedings of the ACM International Symposium on Symbolic and Algebraic Computation (Maui, HI). 133--140. Google ScholarGoogle Scholar
  5. Dixon, L. C. W. and Szegö, G. P. 1975. Towards global optimization. North-Holland, Amsterdam, The Netherlands.Google ScholarGoogle Scholar
  6. Floudas, C. A., Pardalos, P. M., Adjiman, C. S., Esposito, W. R., Gümüs, Z. H., Harding, S. T., Klepeis, J. L., Meyer, C. A., and Schweiger, C. A. 1999. Handbook of Test Problems in Local and Global Optimization. Kluwer, Dordrecht, The Netherlands. See titan.princeton.edu/TestProblemsGoogle ScholarGoogle Scholar
  7. Goemans, M. X. and Williamson, D. P. 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 6, 1115--1145. Google ScholarGoogle Scholar
  8. Henrion, D., Tarbouriech, S., and Arzelier, D. 2001. LMI approximations for the radius of the intersection of ellipsoids. J. Opt. Theory Appl. 108, 1, pp. 1--28. Google ScholarGoogle Scholar
  9. Lasserre, J. B. 2001. Global optimization with polynomials and the problem of moments. SIAM J. Opt. 11, 3, 796--817. Google ScholarGoogle Scholar
  10. Lasserre, J. B. 2002a. An explicit equivalent positive semidefinite program for 0--1 nonlinear programs. SIAM J. Opt. 12, 3, 756--769. Google ScholarGoogle Scholar
  11. Lasserre, J. B. 2002b. Polynomials nonnegative on a grid and discrete optimization. Trans. Amer. Math. Soc. 354, 2, 631--649.Google ScholarGoogle Scholar
  12. Nesterov, Y. 2000. Squared functional systems and optimization problems. In High Performance Optimization, H. Frenk, K. Roos, and T. Terlaky (Eds.). Kluwer, Dordrecht, The Netherlands, Chap. 17, 405--440.Google ScholarGoogle Scholar
  13. Parrilo, P. A. 2000. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. dissertation. California Institute of Technology, Pasadena, CA. See www.control.ethz.ch/∼parrilo.Google ScholarGoogle Scholar
  14. Parrilo, P. A. 2003. Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 96, 2, 293--320.Google ScholarGoogle Scholar
  15. Putinar, M.1993. Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 3, 969--984.Google ScholarGoogle Scholar
  16. Sherali, H. D. and Adams, W. P. 1990. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discr. Math. 3, 3, 411--430. Google ScholarGoogle Scholar
  17. Sherali, H. D. and Adams, W. P. 1999. A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Kluwer, Dordrecht, The Netherlands.Google ScholarGoogle Scholar
  18. Shor, N. Z. 1987. Quadratic optimization problems. Tekhn. Kibernet. 1, 128--139.Google ScholarGoogle Scholar
  19. Shor, N. Z. 1998. Nondifferentiable optimization and polynomial problems. Kluwer, Dordrecht, The Netherlands.Google ScholarGoogle Scholar
  20. Soland, R. M. 1971. An algorithm for separable nonconvex programming problems---II: Nonconvex constraints. Manag. Sci. 17, 759--773.Google ScholarGoogle Scholar
  21. Sturm, J. F. 1999. Using SeDuMi 1.02, a Matlab Toolbox for Optimization over Symmetric Cones. Opt. Meth. Softw. 11--12, 625--653. Version 1.05 available at fewcal.kub.nl/sturm.Google ScholarGoogle Scholar
  22. The MathWorks Inc. 2001. Matlab version 6.1. The Mathworks Inc., Natick, MA. See www.mathworks.com.Google ScholarGoogle Scholar
  23. Vandenberghe, L. and Boyd, S. 2001. Semidefinite programming. SIAM Rev. 38, 1 (March), 49--95. Google ScholarGoogle Scholar
  24. Waterloo Maple Software Inc. 2001. Maple V release 5. Waterloo, Ont., Canada. See www. maplesoft.com.Google ScholarGoogle Scholar

Index Terms

  1. GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader