skip to main content
10.1145/780542.780612acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article

Touring a sequence of polygons

Published:09 June 2003Publication History

ABSTRACT

Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s, visits in order each of the polygons, and ends at t. If the polygons are disjoint and convex, we give an algorithm running in time O(kn log (n/k)), where n is the total number of vertices specifying the polygons. We also extend our results to a case in which the convex polygons are arbitrarily intersecting and the subpath between any two consecutive polygons is constrained to lie within a simply connected region; the algorithm uses O(nk2 log n) time. Our methods are simple and allow shortest path queries from s to a query point t to be answered in time O(k log n + m), where m is the combinatorial path length. We show that for nonconvex polygons this "touring polygons" problem is NP-hard.The touring polygons problem is a strict generalization of some classic problems in computational geometry, including the safari problem, the zoo-keeper problem, and the watchman route problem in a simple polygon. Our new results give an order of magnitude improvement in the running times of the safari problem and the watchman route problem: We solve the safari problem in O(n2 log n) time and the watchman route problem (through a fixed point s) in time O(n3 log n), compared with the previous time bounds of O(n3) and O(n4), respectively.

References

  1. T. Asano, D. Kirkpatrick and C. Yap. Pseudo approximation algorithms, with applications to optimal motion planning. In Proc. 18th Annu. ACM Sympos. Comput. Geom., 2002, 170--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. H. Baumgarten, H. Jung and K. Mehlhorn. Dynamic point location in general subdivisions. J. Algorithms, 17:342--380, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Bespamyatnikh. An O(n log n) algorithm for the zoo-keeper's problem. Computational Geometry: Theory and Applications, 24:63--74, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Canny and J. H. Reif. New lower bound techniques for robot motion planning problems. In Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci., 1987, 49--60.Google ScholarGoogle Scholar
  5. B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica, 12:54--68, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  6. B. Chazelle and L. J. Guibas. Visibility and intersection problems in plane geometry. Discrete Comput. Geom., 4:551--581, 1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. W.-P. Chin and S. Ntafos. Shortest watchman routes in simple polygons. Discrete Comput. Geom., 6:9--31, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. W.-P. Chin and S. Ntafos. The zookeeper route problem. Information Sciences, 63:245--259, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. W. Chin and S. Ntafos. Optimum watchman routes. Information Processing Letters, 28:39--44, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Choi, J. Sellen, and C. K. Yap. Approximate Euclidean shortest paths in 3-space. Internat. J. Comput. Geom. Appl. , 7:271--295, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. Choi, J. Sellen, and C. K. Yap. Precision-sensitive Euclidean shortest path in 3-space. In Proc. 11th Annu. ACM Sympos. Comput. Geom., 1995, 350--359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. L. Clarkson. Approximation algorithms for shortest path motion planning. In Proc. 19th Annu. ACM Sympos. Theory Comput., 1987, 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K. L. Clarkson, S. Kapoor, and P. M. Vaidya. Rectilinear shortest paths through polygonal obstacles in O(n (log n)2) time. In Proc. 3rd Annu. ACM Sympos. Comput. Geom., 1987, 251--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. de Berg, M. van Kreveld, and B. J. Nilsson. Shortest path queries in rectilinear worlds of higher dimension. In Proc. 7th Annu. ACM Sympos. Comput. Geom., 1991, 51--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. de Berg, M. van Kreveld, B. J. Nilsson, and M. H. Overmars. Shortest path queries in rectilinear worlds. Internat. J. Comput. Geom. Appl. , 2:287--309, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Dror. Polygon plate-cutting with a given order. IIE Transactions, 31:271--274, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  17. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209--233, 1987.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Hershberger and J. Snoeyink. An efficient solution to the zookeeper's problem. In Proc. 6th Canadian Conf. on Comp. Geometry, 1994, 104--109.Google ScholarGoogle Scholar
  19. J. Hershberger and S. Suri. A pedestrian approach to ray shooting: shoot a ray, take a walk. J. Algorithms, 18:403--431, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. S. B. Mitchell, Geometric shortest paths and network optimization, In Handbook of Computational Geometry (J.-R. Sack and J. Urrutia, eds.), pages 633--701, Elsevier Science, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. Ntafos. Watchman routes under limited visibility. Comput. Geom. Theory Appl., 1:149--170, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. H. Papadimitriou. An algorithm for shortest-path motion in three dimensions. Inform. Process. Lett., 20:259--263, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  23. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. X. Tan and T. Hirata. Shortest safari routes in simple polygons. Lecture Notes in Computer Science, Vol. 834, 1994, 523--531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. X. Tan, T. Hirata, and Y. Inagaki. Corrigendum to "An Incremental Algorithm for Constructing Shortest Watchman Routes". International J. of Comp. Geom. and App. , 9:319--323, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  26. X. Tan. Fast computation of shortest watchman routes in simple polygons. Information Processing Letters, 77:27--33, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. X. Tan. Shortest zookeeper's routes in simple polygons. Information Processing Letters, 77:23--26, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. X. Tan and T. Hirata. Finding shortest safari routes in simple polygons. Manuscript (submitted), Tokai University, 2001.Google ScholarGoogle Scholar

Index Terms

  1. Touring a sequence of polygons

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '03: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing
      June 2003
      740 pages
      ISBN:1581136749
      DOI:10.1145/780542

      Copyright © 2003 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 June 2003

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      STOC '03 Paper Acceptance Rate80of270submissions,30%Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader