skip to main content
10.1145/3491102.3502119acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Open Access
Best Paper

Meander Coil++: A Body-scale Wireless Power Transmission Using Safe-to-body and Energy-efficient Transmitter Coil

Published:29 April 2022Publication History

ABSTRACT

Wearable devices for life-logging and healthcare have been studied, but the need for frequent charging imposes inconvenience for long-term use. Integrating textile-based wireless chargers (i.e., coil) into clothing enables sustainable wearable computing by charging the on-body devices in use. However, the electromagnetic field generated by conventional coil chargers strongly interferes with human body, and the high resistance of conductive threads leads to inefficient power delivery. This paper presents Meander Coil++, enabling safe, energy-efficient, and body-scale wireless power delivery. Meander Coil++ uses a wiring pattern that suppresses electromagnetic exposure to the human body without compromising power delivery performance and a liquid-metal-based low-loss conductive cord. With these advancements, Meander Coil++ transmits a few watts of power to on-body devices at 25% DC-to-DC efficiency while complying with international safety guidelines regarding electromagnetic exposure. We envision Meander Coil++ can maintain multiple devices on body for weeks beyond the confines of their small battery capacity.

Skip Supplemental Material Section

Supplemental Material

3491102.3502119-video-figure.mp4

mp4

30.8 MB

3491102.3502119-video-preview.mp4

mp4

7.7 MB

3491102.3502119-talk-video.mp4

mp4

50.5 MB

References

  1. [n. d.]. Body Tissue Dielectric Parameters. Retrieved March 1, 2021 from https://www.fcc.gov/general/body-tissue-dielectric-parametersGoogle ScholarGoogle Scholar
  2. 2019. Google Glass Enterprise Edition 2 drops to $999 and adds Qualcomm’s XR1. Retrieved March 1, 2021 from https://venturebeat.com/2019/05/20/google-glass-enterprise-edition-2-levels-up-with-qualcomms-xr1-and-smith-frames/Google ScholarGoogle Scholar
  3. 2020. Apple Watch Battery and Performance. Retrieved March 1, 2021 from https://support.apple.com/en-us/HT210551Google ScholarGoogle Scholar
  4. 2020. ICNIRP GUIDELINES. Retrieved March 1, 2021 from https://www.icnirp.org/cms/upload/publications/ICNIRPrfgdl2020.pdfGoogle ScholarGoogle Scholar
  5. Lea Albaugh, Lining Yao, and Scott Hudson. 2019. Digital fabrication of soft actuated objects by machine knitting. Conference on Human Factors in Computing Systems - Proceedings (2019). https://doi.org/10.1145/3290607.3313270Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jokubas Ausra, Mingzheng Wu, Xin Zhang, Abraham Vázquez-guardado, Patrick Skelton, and Roberto Peralta. 2021. Platforms for Transcranial and Long-Range Optogenetics in Freely Moving Animals. 16 (2021). https://doi.org/10.1073/pnas.2025775118/-/DCSupplemental.PublishedGoogle ScholarGoogle ScholarCross RefCross Ref
  7. Yung Wey Chong, Widad Ismail, Kwangman Ko, and Chen Yi Lee. 2019. Energy Harvesting for Wearable Devices: A Review. IEEE Sensors Journal 19, 20 (2019), 9047–9062. https://doi.org/10.1109/JSEN.2019.2925638Google ScholarGoogle ScholarCross RefCross Ref
  8. Andreas Christ, Mark G. Douglas, John M. Roman, Emily B. Cooper, Alanson P. Sample, Benjamin H. Waters, Joshua R. Smith, and Niels Kuster. 2013. Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits. IEEE Transactions on Electromagnetic Compatibility 55, 2(2013), 265–274. https://doi.org/10.1109/TEMC.2012.2219870Google ScholarGoogle ScholarCross RefCross Ref
  9. Bruce Cook and I.J Lowe. 1982. A large-inductance, high-frequency, high-Q, series-tuned coil for NMR. Journal of Magnetic Resonance (1969) 49, 2 (9 1982), 346–349. https://doi.org/10.1016/0022-2364(82)90200-1Google ScholarGoogle ScholarCross RefCross Ref
  10. Christopher B. Cooper, Kuralamudhan Arutselvan, Ying Liu, Daniel Armstrong, Yiliang Lin, Mohammad Rashed Khan, Jan Genzer, and Michael D. Dickey. 2017. Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers. Advanced Functional Materials 27, 20 (2017). https://doi.org/10.1002/adfm.201605630Google ScholarGoogle ScholarCross RefCross Ref
  11. Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak. 2020. Battery-Free Game Boy. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 3 (9 2020), 1–34. https://doi.org/10.1145/3411839Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Artem Dementyev, Hsin Liu Cindy Kao, Inrak Choi, Deborah Ajilo, Maggie Xu, Joseph A. Paradiso, Chris Schmandt, and Sean Follmer. 2016. Rovables: Miniature on-body robots as mobile wearables. UIST 2016 - Proceedings of the 29th Annual Symposium on User Interface Software and Technology (2016), 111–120. https://doi.org/10.1145/2984511.2984531Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Michael D. Dickey. 2017. Stretchable and Soft Electronics using Liquid Metals. Advanced Materials 29, 27 (2017), 1–19. https://doi.org/10.1002/adma.201606425Google ScholarGoogle ScholarCross RefCross Ref
  14. Michael D. Dickey, Ryan C. Chiechi, Ryan J. Larsen, Emily A. Weiss, David A. Weitz, and George M. Whitesides. 2008. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials 18, 7 (2008), 1097–1104. https://doi.org/10.1002/adfm.200701216Google ScholarGoogle ScholarCross RefCross Ref
  15. Yong Du, Kefeng Cai, Song Chen, Hongxia Wang, Shirley Z. Shen, Richard Donelson, and Tong Lin. 2015. Thermoelectric Fabrics: Toward Power Generating Clothing. Scientific Reports 5, 1 (3 2015), 6411. https://doi.org/10.1038/srep06411Google ScholarGoogle ScholarCross RefCross Ref
  16. Chaochao Dun, Corey A. Hewitt, Huihui Huang, David S. Montgomery, Junwei Xu, and David L. Carroll. 2015. Flexible thermoelectric fabrics based on self-assembled tellurium nanorods with a large power factor. Physical Chemistry Chemical Physics 17, 14 (2015), 8591–8595. https://doi.org/10.1039/C4CP05390GGoogle ScholarGoogle ScholarCross RefCross Ref
  17. Jun Gong, Yu Wu, Lei Yan, Teddy Seyed, and Xing-dong Yang. 2019. Tessutivo. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. ACM, New York, NY, USA, 29–41. https://doi.org/10.1145/3332165.3347897Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Changyo Han, Ryo Takahashi, Yuchi Yahagi, and Takeshi Naemura. 2021. 3D Printing Firm Inflatables with Internal Tethers. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, 1–7. https://doi.org/10.1145/3411763.3451613Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. C. K. Harnett. 2017. Tobiko: A Contact Array for Self-Configuring, Surface-Powered Sensors. (2017), 2024–2028. https://doi.org/10.1145/3025453.3025504Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Akimasa Hirata, Fumihiro Ito, and Ilkka Laakso. 2013. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system. Physics in Medicine and Biology 58, 17 (2013). https://doi.org/10.1088/0031-9155/58/17/N241Google ScholarGoogle ScholarCross RefCross Ref
  21. Ali Kiaghadi, Morgan Baima, Jeremy Gummeson, Trisha Andrew, and Deepak Ganesan. 2018. Fabric as a Sensor: Towards unobtrusive sensing of human behavior with triboelectric textiles. SenSys 2018 - Proceedings of the 16th Conference on Embedded Networked Sensor Systems (2018), 199–210. https://doi.org/10.1145/3274783.3274845Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. André Kurs, Aristeidis Karalis, Robert Moffatt, J. D. Joannopoulos, Peter Fisher, and Marin Soljačić. 2007. Wireless power transfer via strongly coupled magnetic resonances. Science 317, 5834 (2007), 83–86. https://doi.org/10.1126/science.1143254Google ScholarGoogle ScholarCross RefCross Ref
  23. John Kymissis, Clyde Kendall, Joseph Paradiso, and Neil Gershenfeld. 1998. Parasitic power harvesting in shoes. In Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215), Vol. 1998-Octob. IEEE Comput. Soc, 132–139. https://doi.org/10.1109/ISWC.1998.729539Google ScholarGoogle ScholarCross RefCross Ref
  24. Andreas Leber, Chaoqun Dong, Rajasundar Chandran, Tapajyoti Das Gupta, Nicola Bartolomei, and Fabien Sorin. 2020. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nature Electronics 3, 6 (2020), 316–326. https://doi.org/10.1038/s41928-020-0415-yGoogle ScholarGoogle ScholarCross RefCross Ref
  25. Rongzhou Lin, Han Joon Kim, Sippanat Achavananthadith, Selman A. Kurt, Shawn C.C. Tan, Haicheng Yao, Benjamin C.K. Tee, Jason K.W. Lee, and John S. Ho. 2020. Wireless battery-free body sensor networks using near-field-enabled clothing. Nature Communications 11, 1 (2020), 1–10. https://doi.org/10.1038/s41467-020-14311-2Google ScholarGoogle ScholarCross RefCross Ref
  26. Qiuyu Lu, Chengpeng Mao, Liyuan Wang, and Haipeng Mi. 2016. LIME: LIquid MEtal Interfaces for Non-Rigid Interaction. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. ACM, New York, NY, USA, 449–452. https://doi.org/10.1145/2984511.2984562Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Alex Mazursky, Shan Yuan Teng, Romain Nith, and Pedro Lopes. 2021. Magnetio: Passive yet interactive sof haptic patches anywhere. Conference on Human Factors in Computing Systems - Proceedings (2021). https://doi.org/10.1145/3411764.3445543Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Paul D. Mitcheson, Eric M. Yeatman, G. Kondala Rao, Andrew S. Holmes, and Tim C. Green. 2008. Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96, 9 (2008), 1457–1486. https://doi.org/10.1109/JPROC.2008.927494Google ScholarGoogle ScholarCross RefCross Ref
  29. Noor Mohammed, Rui Wang, Robert W Jackson, Yeonsik Noh, Jeremy Gummeson, and Sunghoon Ivan Lee. 2021. ShaZam. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 2 (6 2021), 1–25. https://doi.org/10.1145/3463505Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual knitting machine programming. ACM Transactions on Graphics 38, 4 (2019). https://doi.org/10.1145/3306346.3322995Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Simiao Niu, Naoji Matsuhisa, Levent Beker, Jinxing Li, Sihong Wang, Jiechen Wang, Yuanwen Jiang, Xuzhou Yan, Youngjun Yun, William Burnett, Ada S. Y. Poon, Jeffery B.-H. Tok, Xiaodong Chen, and Zhenan Bao. 2019. A wireless body area sensor network based on stretchable passive tags. Nature Electronics 2, 8 (2019), 361–368. https://doi.org/10.1038/s41928-019-0286-2Google ScholarGoogle ScholarCross RefCross Ref
  32. Akihito Noda and Hiroyuki Shinoda. 2017. Frequency-division-multiplexed signal and power transfer for wearable devices networked via conductive embroideries on a cloth. IEEE MTT-S International Microwave Symposium Digest (2017), 537–540. https://doi.org/10.1109/MWSYM.2017.8058619Google ScholarGoogle ScholarCross RefCross Ref
  33. Andreas Port, Roger Luechinger, Loris Albisetti, Matija Varga, Josip Marjanovic, Jonas Reber, David Otto Brunner, and Klaas Paul Pruessmann. 2020. Detector clothes for MRI: A wearable array receiver based on liquid metal in elastic tubes. Scientific Reports 10, 1 (2020), 1–10. https://doi.org/10.1038/s41598-020-65634-5Google ScholarGoogle ScholarCross RefCross Ref
  34. E. Rehmi Post and Margaret Orth. 1997. Smart fabric, or ‘wearable clothing’. International Symposium on Wearable Computers, Digest of Papers (1997), 167–168. https://doi.org/10.1109/iswc.1997.629937Google ScholarGoogle ScholarCross RefCross Ref
  35. Deepak Ranjan Sahoo, Timothy Neate, Yutaka Tokuda, Jennifer Pearson, Simon Robinson, Sriram Subramanian, and Matt Jones. 2018. Tangible Drops: A Visio-Tactile Display Using Actuated Liquid-Metal Droplets. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/3173574.3173751Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. F. Satoi, H. Matsuki, S. Kikuchi, T. Seto, T. Satoh, H. Osada, and K. Seki. 1998. A new meander type contactless power transmission system - Active excitation with a characteristics of coil shape. IEEE Transactions on Magnetics 34, 4 PART 1 (1998), 2066–2068. https://doi.org/10.1109/20.706797Google ScholarGoogle ScholarCross RefCross Ref
  37. Rishi Shukla, Neev Kiran, Rui Wang, Jeremy Gummeson, and Sunghoon Ivan Lee. 2019. SkinnyPower: Enabling batteryless wearable sensors via intra-body power transfer. SenSys 2019 - Proceedings of the 17th Conference on Embedded Networked Sensor Systems (2019), 68–82. https://doi.org/10.1145/3356250.3360034Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wei Sun, Yanjun Chen, Simon Zhan, and Teng Han. 2021. Relectrode: A reconfigurable electrode for multi-purpose sensing based on microfluidics. Conference on Human Factors in Computing Systems - Proceedings (2021). https://doi.org/10.1145/3411764.3445652Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tetsu Sunohara, Akimasa Hirata, Ilkka Laakso, Valerio De Santis, and Teruo Onishi. 2015. Evaluation of nonuniform field exposures with coupling factors. Physics in Medicine and Biology 60, 20 (2015), 8129–8140. https://doi.org/10.1088/0031-9155/60/20/8129Google ScholarGoogle ScholarCross RefCross Ref
  40. Ryo Takahashi, Masaaki Fukumoto, Changyo Han, Takuya Sasatani, Yoshiaki Narusue, and Yoshihiro Kawahara. 2020. TelemetRing: A Batteryless and Wireless Ring-shaped Keyboard using Passive Inductive Telemetry. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology. ACM, New York, NY, USA, 1161–1168. https://doi.org/10.1145/3379337.3415873Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ryo Takahashi, Takuya Sasatani, Fuminori Okuya, Yoshiaki Narusue, and Yoshihiro Kawahara. 2018. A Cuttable Wireless Power Transfer Sheet. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 4 (2018), 1–25. https://doi.org/10.1145/3287068Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ryo Takahashi, Wakako Yukita, Takuya Sasatani, Tomoyuki Yokota, Takao Someya, and Yoshihiro Kawahara. 2021. Twin Meander Coil : Sensitive Readout of Battery-free On-body Wireless Sensors Using Body-scale Meander Coils. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 4 (2021). https://doi.org/10.1145/3494996Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Xi Tian, Pui Mun Lee, Yu Jun Tan, Tina L.Y. Wu, Haicheng Yao, Mengying Zhang, Zhipeng Li, Kian Ann Ng, Benjamin C.K. Tee, and John S. Ho. 2019. Wireless body sensor networks based on metamaterial textiles. Nature Electronics 2, 6 (2019), 243–251. https://doi.org/10.1038/s41928-019-0257-7Google ScholarGoogle ScholarCross RefCross Ref
  44. Dries Van Wageningen and Toine Staring. 2010. The Qi wireless power standard. Proceedings of EPE-PEMC 2010 - 14th International Power Electronics and Motion Control Conference(2010), 25–32. https://doi.org/10.1109/EPEPEMC.2010.5606673Google ScholarGoogle ScholarCross RefCross Ref
  45. Deepak Vasisht, Guo Zhang, Omid Abari, Hsiao-Ming Lu, Jacob Flanz, and Dina Katabi. 2018. In-body backscatter communication and localization. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. ACM, New York, NY, USA, 132–146. https://doi.org/10.1145/3230543.3230565Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Anandghan Waghmare, Qiuyue Xue, Dingtian Zhang, Yuhui Zhao, Shivan Mittal, Nivedita Arora, Ceara Byrne, Thad Starner, and Gregory Abowd. 2020. UbiquiTouch: Self Sustaining Ubiquitous Touch Interfaces. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 1 (2020), 1–22. https://doi.org/10.1145/3380989Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Irmandy Wicaksono, Carson I. Tucker, Tao Sun, Cesar A. Guerrero, Clare Liu, Wesley M. Woo, Eric J. Pence, and Canan Dagdeviren. 2020. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flexible Electronics 4, 1 (2020). https://doi.org/10.1038/s41528-020-0068-yGoogle ScholarGoogle ScholarCross RefCross Ref
  48. Paul Worgan and Mike Fraser. 2016. Garment level power distribution for wearables using inductive power transfer. Proceedings - 2016 9th International Conference on Human System Interactions, HSI 2016 (2016), 277–283. https://doi.org/10.1109/HSI.2016.7529644Google ScholarGoogle ScholarCross RefCross Ref
  49. Paul Worgan, Jarrod Knibbe, Mike Fraser, and Diego Martinez Plasencia. 2016. PowerShake: Power Transfer interactions for mobile devices. Conference on Human Factors in Computing Systems - Proceedings (2016), 4734–4745. https://doi.org/10.1145/2858036.2858569Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. 2013. PneUI: Pneumatically Actuated Soft Composite Materials for Shape Changing Interfaces. In Proceedings of the 26th annual ACM symposium on User interface software and technology. ACM, New York, NY, USA, 13–22. https://doi.org/10.1145/2501988.2502037Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Tomoyuki Yokota, Yusuke Inoue, Yuki Terakawa, Jonathan Reeder, Martin Kaltenbrunner, Taylor Ware, Kejia Yang, Kunihiko Mabuchi, Tomohiro Murakawa, Masaki Sekino, Walter Voit, Tsuyoshi Sekitani, and Takao Someya. 2015. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proceedings of the National Academy of Sciences 112, 47 (11 2015), 14533–14538. https://doi.org/10.1073/pnas.1515650112Google ScholarGoogle ScholarCross RefCross Ref
  52. Tomoyuki Yokota, Takashi Nakamura, Hirofumi Kato, Marina Mochizuki, Masahiro Tada, Makoto Uchida, Sunghoon Lee, Mari Koizumi, Wakako Yukita, Akio Takimoto, and Takao Someya. 2020. A conformable imager for biometric authentication and vital sign measurement. Nature Electronics 3, 2 (2020), 113–121. https://doi.org/10.1038/s41928-019-0354-7Google ScholarGoogle ScholarCross RefCross Ref
  53. Mersedeh Zandvakili, Mohammad Mahdi Honari, Pedram Mousavi, and Dan Sameoto. 2017. Gecko-Gaskets for Multilayer, Complex, and Stretchable Liquid Metal Microwave Circuits and Antennas. Advanced Materials Technologies 2, 11 (2017), 1–5. https://doi.org/10.1002/admt.201700144Google ScholarGoogle ScholarCross RefCross Ref
  54. Meysam Zargham and P. Glenn Gulak. 2012. Maximum achievable efficiency in near-field coupled power-transfer systems. IEEE Transactions on Biomedical Circuits and Systems 6, 3 (2012), 228–245. https://doi.org/10.1109/TBCAS.2011.2174794Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Meander Coil++: A Body-scale Wireless Power Transmission Using Safe-to-body and Energy-efficient Transmitter Coil

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
      April 2022
      10459 pages
      ISBN:9781450391573
      DOI:10.1145/3491102

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 April 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format