skip to main content
article

Cognitive factors can influence self-motion perception (vection) in virtual reality

Authors Info & Claims
Published:01 July 2006Publication History
Skip Abstract Section

Abstract

Research on self-motion perception and simulation has traditionally focused on the contribution of physical stimulus properties (“bottom-up factors”) using abstract stimuli. Here, we demonstrate that cognitive (“top-down”) mechanisms like ecological relevance and presence evoked by a virtual environment can also enhance visually induced self-motion illusions (vection). In two experiments, naive observers were asked to rate presence and the onset, intensity, and convincingness of circular vection induced by different rotating visual stimuli presented on a curved projection screen (FOV: 54° × 45°). Globally consistent stimuli depicting a natural 3D scene proved more effective in inducing vection and presence than inconsistent (scrambled) or unnatural (upside-down) stimuli with similar physical stimulus properties. Correlation analyses suggest a direct relationship between spatial presence and vection. We propose that the coherent pictorial depth cues and the spatial reference frame evoked by the naturalistic environment increased the believability of the visual stimulus, such that it was more easily accepted as a stable “scene” with respect to which visual motion is more likely to be judged as self-motion than object motion. This work extends our understanding of mechanisms underlying self-motion perception and might thus help to improve the effectiveness and believability of virtual reality applications.

References

  1. Andersen, G. J. and Braunstein, M. L. 1985. Induced self-motion in central vision. Journal of Experimental Psychology-Human Perception and Performance 11, 2, 122--132.Google ScholarGoogle ScholarCross RefCross Ref
  2. Becker, W., Raab, S., and Jürgens, R. 2002. Circular vection during voluntary suppression of optokinetic reflex. Experimental Brain Research 144, 4 (June), 554--557.Google ScholarGoogle ScholarCross RefCross Ref
  3. Brandt, T., Dichgans, J., and Koenig, E. 1973b. Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research 16, 476--491.Google ScholarGoogle ScholarCross RefCross Ref
  4. Darlington, C. L. and Smith, P. F. 1998. Further evidence for gender differences in circularvection. Journal of Vestibular Research-Equilibrium & Orientation 8, 2 (Mar.-Apr.), 151--153.Google ScholarGoogle ScholarCross RefCross Ref
  5. Dichgans, J. and Brandt, T. 1978. Visual-vestibular interaction: Effects on self-motion perception and postural control. In Perception, R. Held, H. W. Leibowitz, and H.-L. Teuber, Eds. Handbook of Sensory Physiology, vol. VIII. Springer New York, 756--804.Google ScholarGoogle Scholar
  6. Distler, H. K. 2003. Wahrnehmung in Virtuellen Welten. Ph.D. thesis, Justus-Liebig-Universität Gießen.Google ScholarGoogle Scholar
  7. Fischer, M. H. and Kornmüller, A. E. 1930. Optokinetisch ausgelöste Bewegungswahrnehmung und optokinetischer Nystagmus {Optokinetically induced motion perception and optokinetic nystagmus}. Journal für Psychologie und Neurologie, 273--308.Google ScholarGoogle Scholar
  8. Fushiki, H., Takata, S., and Watanabe, Y. 2000. Influence of fixation on circular vection. Journal of Vestibular Research-Equilibrium & Orientation 10, 3, 151--155.Google ScholarGoogle Scholar
  9. Hettinger, L. J. 2002. Illusory self-motion in virtual environments. In Handbook of Virtual Environments, K. M. Stanney, Ed. Lawrence Erlbaum Assoc. Hillsdale, NJ, 471--492.Google ScholarGoogle Scholar
  10. Howard, I. P. and Heckmann, T. 1989. Circular vection as a function of the relative sizes, distances, and positions of 2 competing visual-displays. Perception 18, 5, 657--665.Google ScholarGoogle ScholarCross RefCross Ref
  11. Howard, I. P. and Howard, A. 1994. Vection---the contributions of absolute and relative visual motion. Perception 23, 7, 745--751.Google ScholarGoogle ScholarCross RefCross Ref
  12. IJsselsteijn, W. A. 2004. Presence in depth. Ph.D. thesis, Technische Universiteit Eindhoven, Netherland.Google ScholarGoogle Scholar
  13. Kennedy, R. S., Lane, N. E., Lilienthal, M. G., Berbaum, K. S., and Lawrence. 1992. Profile analysis of simulator sickness symptoms: Application to virtual environment systems. Presence---Teleoperators and Virtual Environment 1, 3, 295--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kennedy, R. S., Hettinger, L. J., Harm, D. L., Ordy, J. M., and Dunlap, W. P. 1996. Psychophysical scaling of circular vection (cv) produced by optokinetic (okn) motion: Individual differences and effects of practice. Journal of Vestibular Research-Equilibrium & Orientation 6, 5 (Sep.-Oct.), 331--341.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kitazaki, M. and Sato, T. 2003. Attentional modulation of self-motion perception. Perception 32, 4, 475--484.Google ScholarGoogle ScholarCross RefCross Ref
  16. Larsson, P., Västfjäll, D., and Kleiner, M. 2004. Perception of self-motion and presence in auditory virtual environments. In Proceedings of Seventh Annual Workshop Presence 2004. 252--258. Available: www.kyb.mpg.de/publication.html?publ=2953.Google ScholarGoogle Scholar
  17. Lepecq, J. C., Jouen, F., and Dubon, D. 1993. The effect of linear vection on manual aiming at memorized directions of stationary targets. Perception 22, 1, 49--60.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lepecq, J. C., Giannopulu, I., and Baudonniere, P. M. 1995. Cognitive effects on visually induced body motion in children. Perception 24, 4, 435--449.Google ScholarGoogle ScholarCross RefCross Ref
  19. Mach, E. 1875. Grundlinien der Lehre von der Bewegungsempfindung. Engelmann, Leipzig, Germany.Google ScholarGoogle Scholar
  20. Nakamura, S. and Shimojo, S. 1999. Critical role of foreground stimuli in perceiving visually induced self-motion (vection). Perception 28, 7, 893--902.Google ScholarGoogle ScholarCross RefCross Ref
  21. Ohmi, M., Howard, I. P., and Landolt, J. P. 1987. Circular vection as a function of foreground-background relationships. Perception 16, 1, 17--22.Google ScholarGoogle ScholarCross RefCross Ref
  22. Palmisano, S. and Chan, A. Y. C. 2004. Jitter and size effects on vection are immune to experimental instructions and demands. Perception 33, 8, 987--1000.Google ScholarGoogle ScholarCross RefCross Ref
  23. Prothero, J. D. 1998. The role of rest frames in vection, presence and motion sickness. Ph.D. thesis, University of Washington. Available: www.hitl.washington.edu/publications/r-98-11/. Google ScholarGoogle Scholar
  24. Riecke, B. E. and von der Heyde, M. 2002. Qualitative modeling of spatial orientation processes using logical propositions: Interconnecting spatial presence, spatial updating, piloting, and spatial cognition. Tech. Rep. 100, MPI for Biological Cybernetics. Avaliable: www.kyb.mpg.de/publication.html?publ=2021.Google ScholarGoogle Scholar
  25. Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., and Bülthoff, H. H. 2004. Enhancing the visually induced self-motion illusion (vection) under natural viewing conditions in virtual reality. In Proceedings of Seventh Annual Workshop Presence 2004. 125--132. Available: www.kyb.mpg.de/publication.html?publ=2864.Google ScholarGoogle Scholar
  26. Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., von der Heyde, M., and Bülthoff, H. H. 2005a. Scene consistency and spatial presence increase the sensation of self-motion in virtual reality. In ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV). La Coruña, Spain. 111--118. Available: www.kyb.mpg.de/publication.html?publ=3489. Google ScholarGoogle Scholar
  27. Riecke, B. E., Cunningham, D. W., and Bülthoff, H. H. 2006a. Spatial Updating in Virtual Reality: The Sufficiency of Visual Information. Psychological Research. (in press).Google ScholarGoogle Scholar
  28. Riecke, B. E., Schulte-Pelkum, J., and Caniard, F. 2006b. Using the perceptually oriented approach to optimize spatial presence & ego-motion simulation. In Handbook of Presence. Lawrence Erlbaum, Assoc. Hillsdate, NJ, submitted. 49--57Google ScholarGoogle Scholar
  29. Riecke, B. E., Schulte-Pelkum, J., Caniard, F., and Bülthoff, H. H. 2005b. Influence of Auditory Cues on the visually-induced Self-Motion Illusion (Circular Vection) in Virtual Reality. In Proceedings of Eigth Annual Workshop Presence 2005.Google ScholarGoogle Scholar
  30. Riecke, B. E., Schulte-Pelkum, J., Caniard, F., and Bülthoff, H. H. 2005c. Towards lean and elegant self-motion simulation in virtual reality. In Proceedings of IEEE VR2005. Bonn, Germany. 131--138. Google ScholarGoogle Scholar
  31. Riecke, B. E., Västfjäll, D., Larsson, P., and Schulte-Pelkum, J. 2005d. Top-down and multi-modal influences on self-motion perception in virtual reality. In Proceedings of HCI international 2005. Las Vegas, NV.Google ScholarGoogle Scholar
  32. Sadowski, W. and Stanney, K. 2002. Presence in virtual environments. In Handbook of Virtual Environments, K. M. Stanney, Ed. Lawrence Erlbaum Assoc., Hillsdale, NJ 791--806.Google ScholarGoogle Scholar
  33. Schubert, T., Friedmann, F., and Regenbrecht, H. 2001. The experience of presence: Factor analytic insights. Presence---Teleoperators and Virtual Environments 10, 3, 266--281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Schulte-Pelkum, J., Riecke, B. E., and Bülthoff, H. H. 2004. Vibrational cues enhance believability of ego-motion simulation. In International Multisensory Research Forum (IMRF). Available: www.kyb.mpg.de/publication.html?publ=2766.Google ScholarGoogle Scholar
  35. Tschermak, A. 1931. Optischer raumsinn. In Handbuch der Normalen und Pathologischen Physiologie, A. Bethe, G. Bergmann, G. Embden, and A. Ellinger, Eds. Springer, Berlin, 834--1000.Google ScholarGoogle Scholar
  36. van der Steen, F. A. M. and Brockhoff, P. T. M. 2000. Induction and impairment of saturated yaw and surge vection. Perception & Psychophysics 62, 1 (Jan.), 89--99.Google ScholarGoogle ScholarCross RefCross Ref
  37. Wann, J. and Rushton, S. 1994. The illusion of self-motion in virtual-reality environments. Behavioral and Brain Sciences 17, 2 (June), 338--340.Google ScholarGoogle ScholarCross RefCross Ref
  38. Wist, E. R., Diener, H. C., Dichgans, J., and Brandt, T. 1975. Perceived distance and perceived speed of self-motion---linear vs angular velocity. Perception & Psychophysics 17, 6, 549--554.Google ScholarGoogle ScholarCross RefCross Ref
  39. Witmer, B. G. and Singer, M. J. 1998. Measuring presence in virtual environments: A presence questionnaire. Presence---Teleoperators and Virtual Environments 7, 3, 225--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wright, W. G., DiZio, P., and Lackner, J. R. 2005. Vertical linear self-motion perception during visual and inertial motion: More than weighted summation of sensory inputs. Journal of Vestibular Research 15, 185--195.Google ScholarGoogle ScholarCross RefCross Ref
  41. Zacharias, G. L. and Young, L. R. 1981. Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Experimental Brain Research 41, 159--171.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Cognitive factors can influence self-motion perception (vection) in virtual reality

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Applied Perception
          ACM Transactions on Applied Perception  Volume 3, Issue 3
          July 2006
          180 pages
          ISSN:1544-3558
          EISSN:1544-3965
          DOI:10.1145/1166087
          Issue’s Table of Contents

          Copyright © 2006 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2006
          Published in tap Volume 3, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader