skip to main content
10.1145/1401132.1401206acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Real-time path planning for virtual agents in dynamic environments

Published:11 August 2008Publication History

ABSTRACT

We present a novel approach for real-time path planning of multiple virtual agents in complex dynamic scenes. We introduce a new data structure, Multi-agent Navigation Graph (MaNG), which is constructed from the first- and second-order Voronoi diagrams. The MaNG is used to perform route planning and proximity computations for each agent in real time. We compute the MaNG using graphics hardware and present culling techniques to accelerate the computation. We also address undersampling issues for accurate computation. Our algorithm is used for real-time multi-agent planning in pursuit-evasion and crowd simulation scenarios consisting of hundreds of moving agents, each with a distinct goal.

References

  1. F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345--405, Sept. 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better group behaviors in complex environments with global roadmaps. Int. Conf. on the Sim. and Syn. of Living Sys. (Alife), 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Bennewitz and W. Burgard. Finding solvable priority schemes for decoupled path planning techniquesfor teams of mobile robots. Proceedings of the 9th Int. Symposium on Intelligent Robotic Systems (SIRS), 2001.Google ScholarGoogle Scholar
  4. J. Champagne and W. Tang. Real-time simulation of crowds using voronoi diagrams. EG UK Theory and Practice of Computer Graphics, 2005.Google ScholarGoogle Scholar
  5. H. Choset and J. Burdick. Sensor based motion planning: The hierarchical generalized Voronoi graph. In Algorithms for Robot Motion and Manipulation, pages 47--61. A K Peters, 1996.Google ScholarGoogle Scholar
  6. H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, 2005.Google ScholarGoogle Scholar
  7. O. C. Cordeiro, A. Braun, C. B. Silveria, S. R. Musse, and G. G. Cavalheiro. Concurrency on social forces simulation model. First International Workshop on Crowd Simulation, 2005.Google ScholarGoogle Scholar
  8. M. Denny. Solving geometric optimization problems using graphics hardware. In Proc. of Eurographics, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  9. I. Fischer and C. Gotsman. Fast approximation of high order Voronoi diagrams and distance transforms on the GPU. Technical report CS TR-07-05, Harvard University, 2005.Google ScholarGoogle Scholar
  10. M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based hybrid planner. Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2001.Google ScholarGoogle Scholar
  11. J. Funge, X. TU, and D. Terzopoulos. Cognitive modeling: Knowledge, reasoning and planning for intelligent characters. Proc. of ACM SIGGRAPH, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. P. Glardon, R. Boulic, and D. Thalmann. Dynamic obstacle clearing for real-time character animation. Computer Graphics International, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. L. Guibas, C. Holleman, and L. Kavraki. A probabilistic roadmap planner for flexible objects with a workspace medial-axis-based sampling approach. In Proc. of IROS, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. Helbing, L. Buzna, and T. Werner. Self-organized pedestrian crowd dynamics and design solutions. Traffic Forum 12, 2003.Google ScholarGoogle Scholar
  15. K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computation of generalized voronoi diagrams using graphics hardware. Proceedings of ACM SIGGRAPH 1999, pages 277--286, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Interactive motion planning using hardware accelerated computation of generalized voronoi diagrams. IEEE Conference on Robotics and Automation, pages pp. 2931--2937, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  17. K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple 2d geometric proximity queries using graphics hardware. Proc. of ACM Symposium on Interactive 3D Graphics, pages 145--148, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Kamphuis and M. Overmars. Finding paths for coherent groups using clearance. Proc. of ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. Lamarche and S. Donikian. Crowd of virtual humans: a new approach for real-time navigation in complex and structured environments. Computer Graphics Forum, 23(3 (Sept)), 2004.Google ScholarGoogle Scholar
  20. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T.-T. Li and H.-C. Chou. Motion planning for a crowd of robots. Proc. of IEEE Int. Conf. on Robotics and Automation, 2003.Google ScholarGoogle Scholar
  22. C. Loscos, D. Marchal, and A. Meyer. Intuitive crowd behaviour in dense urban environments using local laws. Theory and Practice of Computer Graphics (TPCG'03), 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. R. MUSSE and D. Thalmann. A model of human crowd behavior: Group inter-relationship and collision detection analysis. Computer Animation and Simulation, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. Okabe, B. Boots, and K. Sugihara. Spatial tessellations: concepts and applications of Voronoi diagrams. Wiley & Sons, 1992. ISBN 0 471 93430 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. L. E. PARKER. Designing control laws for cooperative agent teams. Proc. of IEEE Int. Conf. on Robotics and Automation, 1993.Google ScholarGoogle Scholar
  26. N. Pelechano, K. O'Brien, B. Silverman, and N. Badler. Crowd simulation incorporating agent psychological models, roles and communication. First International Workshop on Crowd Simulation, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. Pettre, J.-P. Laumond, and D. Thalmann. A navigation graph for real-time crowd animation on multilayered and uneven terrain. First International Workshop on Crowd Simulation, 2005.Google ScholarGoogle Scholar
  28. C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. In M. C. Stone, editor, Computer Graphics (SIGGRAPH '87 Proceedings), volume 21, pages 25--34, July 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. SOFTWARE. http://www.massivesoftware.com, 2006.Google ScholarGoogle Scholar
  30. G. Still. Crowd Dynamics. PhD thesis, University of Warwik, UK, 2000. Ph.D. Thesis.Google ScholarGoogle Scholar
  31. A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha. Fast proximity computation among deformable models using discrete voronoi diagrams. ACM Trans. Graph. (Proc ACM SIGGRAPH), 25(3):1144--1153, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Sud, N. Govindaraju, R. Gayle, and D. Manocha. Interactive 3d distance field computation using linear factorization. In Proc. ACM Symposium on Interactive 3D Graphics and Games, pages 117--124, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Sud, M. A. Otaduy, and D. Manocha. DiFi: Fast 3D distance field computation using graphics hardware. Computer Graphics Forum (Proc. Eurographics), 23(3):557--566, 2004.Google ScholarGoogle Scholar
  34. M. Sung, M. Gleicher, and S. Chenney. Scalable behaviors for crowd simulation. Computer Graphics Forum, 23(3 (Sept)), 2004.Google ScholarGoogle Scholar
  35. M. Sung, L. KOVAR, and M. Gleicher. Fast and accurate goal-directed motion synthesis for crowds. Proc. of SCA 2005, pages 291--300, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. Treuille, S. Cooper, and Z. Popovic. Continuum crowds. Proc. of ACM SIGGRAPH, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion, perception, behavior. In A. Glassner, editor, Proceedings of SIGGRAPH '94 (Orlando, Florida, July 24--29, 1994), Computer Graphics Proceedings, Annual Conference Series, pages 43--50. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Vleugels and M. H. Overmars. Approximating Voronoi diagrams of convex sites in any dimension. International Journal of Computational Geometry and Applications, 8:201--222, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. A. Wilmarth, N. M. Amato, and P. F. Stiller. Maprm: A probabilistic roadmap planner with sampling on the medial axis of the free space. IEEE Conference on Robotics and Automation, pages 1024--1031, 1999.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Real-time path planning for virtual agents in dynamic environments

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGGRAPH '08: ACM SIGGRAPH 2008 classes
            August 2008
            5354 pages
            ISBN:9781450378451
            DOI:10.1145/1401132

            Copyright © 2008 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 11 August 2008

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate1,822of8,601submissions,21%

            Upcoming Conference

            SIGGRAPH '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader