skip to main content
10.1145/1518701.1518995acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Back-of-device interaction allows creating very small touch devices

Published:04 April 2009Publication History

ABSTRACT

In this paper, we explore how to add pointing input capabilities to very small screen devices. On first sight, touchscreens seem to allow for particular compactness, because they integrate input and screen into the same physical space. The opposite is true, however, because the user's fingers occlude contents and prevent precision.

We argue that the key to touch-enabling very small devices is to use touch on the device backside. In order to study this, we have created a 2.4" prototype device; we simulate screens smaller than that by masking the screen. We present a user study in which participants completed a pointing task successfully across display sizes when using a back-of device interface. The touchscreen-based control condition (enhanced with the shift technique), in contrast, failed for screen diagonals below 1 inch. We present four form factor concepts based on back-of-device interaction and provide design guidelines extracted from a second user study.

References

  1. Albinsson, P. Zhai, S. High precision touch screen interaction. In Proc. CHI'03, 105--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Azuma, R.T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments 6(4) (August 1997). pp. 355--385.Google ScholarGoogle Scholar
  3. Baudisch, P., Zotov, A., Cutrell, E., and Hinckley, K. Starburst: a Target Expansion Algorithm for Non-Uniform Target Distributions. In Proc. AVI'08, pp. 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Buxton, W. A Three-State Model of Graphical Input. In Proc. INTERACT '90. pp. 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Buxton, W., Hill, R.&Rowley, P. Issues and techniques in touch-sensitive tablet input. Proc. SIGGRAPH'85, pp. 215--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Grossman, T, Balakrishnan, R. (2005). The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor's activation area. In Proc. CHI'05, 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hiraoka, S., Miyamoto, I., Tomimatsu, K. Behind Touch, a Text Input Method for Mobile Phones by The Back and Tactile Sense Interface. Information Processing Society of Japan, Interaction 2003. p. 131--138.Google ScholarGoogle Scholar
  8. Iwabuchi., M., Kakehi. Y., and Kakehi, T. LimpiDual Touch: Interactive Limpid Display with Dual-sided Touch Sensing. In SIGGRAPH'08 posters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kabbash, P., Buxton, W. The "Prince" technique: Fitts' law and selection using area cursor. In Proc. of CHI'95, 273--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Labrune, J,B, and Mackay, W. Telebeads: Social Network Mnemonics for Teenagers. In Proc IDC '06, pp. 57--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Li, K., Baudisch, P., and Hinckley, K. BlindSight: eyes-free access to mobile phones. In Proc. CHI'08, pp. 1389--1398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. McGuffin, M., and Balakrishnan, R. Acquisition of Expanding Targets. In Proc. CHI'02, pp. 57--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Merrill, D., Kalanithi, J., and Maes, P. Siftables: Towards Sensor Network User Interfaces. In Proc. TEI'07, pp. 75--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Olwal, A., Feiner S. (2003) Rubbing the Fisheye: precise touch-screen interaction with gestures and fisheye views. In Conf. Companion. UIST'03, pp. 83--84.Google ScholarGoogle Scholar
  15. Potter, R., Weldon, L., Shneiderman, B. (1988). Improving the accuracy of touch screens: an experimental evaluation of three strategies. Proc. CHI' 88, pp. 27--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ramos G., Boulos, M., and Balakrishnan, R. Pressure Widgets. In Proc. CHI'04, pp. 487--494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ren, X., Moriya, S. (2000). Improving selection performance on pen-based systems: a study of pen-based interaction for selection tasks. ACM TOCHI. 7(3):384--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Roudaut, A., Huot, S., and Lecolinet. E. TapTap and Mag-Stick: Improving One-Handed Target Acquisition on Small Touch-screens. In Proc. AVI'08, pp. 146--153 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Schwesig, C., Poupyrev, I., and Mori, E. (2004). Gummi: a bendable computer. In Proc. CHI'04, pp. 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Sears, A., Shneiderman, B. (1991). High precision touch-screens: design strategies and comparisons with a mouse. Int. J. Man-Mach. Stud. 34(4):593--613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Siek, K.A., Rogers, Y., and Connelly, K.H. Fat Finger Worries: How Older and Younger Users Physically Interact with PDAs. In Proc. INTERACT'05, pp. 267--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sugimoto, M. Hiroki, K. (2006). HybridTouch: an intuitive manipulation technique for PDAs using their front and rear surfaces. In Proc. MobileHCI '06, p. 137--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Tang, J. C. and Minneman, S. L. VideoDraw: a video inter-face for collaborative drawing. In Proc. CHI '90. p. 313--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Vogel, D.&Baudisch, P. Shift: A Technique for Operating Pen-Based Interfaces Using Touch. Proc. CHI'07, pp. 657--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., Shen, C. LucidTouch: A See-Through Mobile Device. In Proc. UIST 2007, pp. 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wigdor, D., Leigh, D., Forlines, C., Shipman, S., Barnwell, J., Balakrishnan, R., Shen, C. Under the Table Interaction. In Proc. UIST'06, 259--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wobbrock, J.O., Myers, B.A. and Aung, H.H. (2008) The performance of hand postures in front- and back-of-device interaction for mobile computing. International Journal of Human-Computer Studies. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Yatani, K., Partridge, K., Bern, M., and Newman, M. Escape: A Target Selection Technique Using Visually-cued Gestures. In Proc. CHI 2008, pp. 285--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Zeleznik, R., Miller, T., and Forsberg, A. Pop through Mouse Button Interactions. In Proc. UIST'01, pp195--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Hinckley, K., Guimbretiere, F., Baudisch, P., Sarin, R., Agra-wala, M., Cutrell, E. The Springboard: Multiple Modes in One Spring-Loaded Control. In Proc. CHI'06, pp. 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Li, Y., Hinckley, K., Guan, Z., Landay, J. A. Experimental Analysis of Mode Switching Techniques in Pen-based User Interfaces. In Proc. CHI'05, pp. 461--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zelaznik, H.N., Mone, S., McCabe, G.P. and Thaman, C. (1988) Role of temporal and spatial precision in determining the nature of the speed-accuracy trade-off in aimed-hand movements. Journal of Experimental Psychology: Human Perception and Performance 14 (2), 221--230.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Back-of-device interaction allows creating very small touch devices

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '09: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
        April 2009
        2426 pages
        ISBN:9781605582467
        DOI:10.1145/1518701

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 4 April 2009

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        CHI '09 Paper Acceptance Rate277of1,130submissions,25%Overall Acceptance Rate6,199of26,314submissions,24%

        Upcoming Conference

        CHI '24
        CHI Conference on Human Factors in Computing Systems
        May 11 - 16, 2024
        Honolulu , HI , USA

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader