skip to main content
10.5555/1555880.1555899guideproceedingsArticle/Chapter ViewAbstractPublication PagesgiConference Proceedingsconference-collections
research-article
Free access

One-click white balance using human skin reflectance

Published: 25 May 2009 Publication History

Abstract

Existing methods for white balancing photographs tend to rely on skilled interaction from the user, which is prohibitive for most amateur photographers. We propose a minimal interaction system for white balancing photographs that contain humans. Many of the pictures taken by amateur photographers fall into this category. Our system matches a user-selected patch of skin in a photograph to an entry in a skin reflectance function database. The estimate of the illuminant that emerges from the skin matching can be used to white balance the photograph, allowing users to compensate for biased illumination in an image with a single click. We compare the quality of our results to output from three other low-interaction methods, including commercial approaches such as Google Picasa's one-click relighting [19], a whitepoint-based algorithm [16], and Ebner's localized gray-world algorithm [7]. The comparisons indicate that our approach offers several advantages for amateur photographers.

References

[1]
Adobe. http://www.adobe.com/products/photoshop/main.html. 2008.
[2]
L. Arend and A. Reeves. Simultaneous color constancy. Optical Soc. Am., 3(10):1743--1751, 1986.
[3]
K. Barnard. Improvements to gamut mapping colour constancy algorithms. In ECCV (1), pages 390--403, 2000.
[4]
D. H. Brainard and W. T. Freeman. Bayesian color constancy. J. Opt. Soc. Am. A, 14(7):1393--1411, 1997.
[5]
G. Buchsbaum. A spatial processor model for object colour perception. Journal of the Franklin Institute, (310): 1--26, 1980.
[6]
H. Y. Chong, S. J. Gortler, and T. Zickler. A perception-based color space for illumination-invariant image processing. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, pages 1--7, New York, NY, USA, 2008. ACM.
[7]
M. Ebner. Color constancy using local color shifts. pages Vol III: 276--287, 2004.
[8]
G. D. Finlayson and B. V. Funt. Colour constancy using shadows. Perception, 23:89--90, 1994.
[9]
G. D. Finlayson, S. D. Hordley, and P. M. Hubel. Color by correlation: A simple, unifying framework for color constancy. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1209--1221, 2001.
[10]
G. D. Finlayson, S. D. Hordley, and I. Tastl. Gamut constrained illuminant estimation. Int. J. Comput. Vision, 67(1):93--109, 2006.
[11]
D. A. Forsyth. A novel algorithm for color constancy. Int. J. Comput. Vision, 5(1):5--36, 1990.
[12]
R. Gershon, A. Jepson, and J. Tsotsos. From {R, G, B} to surface reflectance: Computing color constant descriptors in images. Perception, pages 755--758, 1988.
[13]
E. Hsu, T. Mertens, S. Paris, S. Avidan, and F. Durand. Light mixture estimation for spatially varying white balance. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, pages 1--7, New York, NY, USA, 2008. ACM.
[14]
J. T. Kajiya. The rendering equation. In SIGGRAPH '86: Proceedings of the 13th annual conference on Computer graphics and interactive techniques, pages 143--150, New York, NY, USA, 1986. ACM.
[15]
J. Kuang, G. M. Johnson, and M. D. Fairchild. icam06: A refined image appearance model for hdr image rendering. J. Vis. Comun. Image Represent., 18(5):406--414, 2007.
[16]
E. Land. The retinex theory of color constancy. Scientific Am., pages 108--129, 1977.
[17]
H.-C. Lee. Estimating the illuminant color from the shading of a smooth surface. Technical report, Cambridge, MA, USA, 1988.
[18]
G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama. Digital photography with flash and no-flash image pairs. ACM Trans. Graph., 23(3):664--672, 2004.
[19]
G. Picasa. http://picasa.google.com/. 2008.
[20]
E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley. Color transfer between images. IEEE Comput. Graph. Appl., 21(5):34--41, 2001.
[21]
Shutterfly. http://www.shutterfly.com/. 2008.
[22]
R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski. Investigation of color constancy with a neural network. Neural Netw., 17(3):327--337, 2004.
[23]
M. Storring, H. J. Andersen, and E. Granum. Estimation of the illuminant colour from human skin colour. In Proceedings of the Int. Conference on Automatic Face and Gesture Recognition (FG '00, pages 64--69, 2000.
[24]
E. Talvala, A. Adams, M. Horowitz, and M. Levoy. Veiling glare in high dynamic range imaging. In SIGGRAPH '07: ACM SIGGRAPH 2007papers, page 37, New York, NY, USA, 2007. ACM.
[25]
A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin. Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. In SIGGRAPH '07: ACM SIGGRAPH 2007 papers, page 69, New York, NY, USA, 2007. ACM.
[26]
G. Ward and E. Eydelberg-Vileshin. Picture perfect rgb rendering using spectral prefiltering and sharp color primaries. In EGRW '02: Proceedings of the 13th Eurographics workshop on Rendering, pages 117--124, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.
[27]
Y. Weiss. Deriving intrinsic images from image sequences, pages 68--75, 2001.
[28]
T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner, C. Tu, J. McAndless, J. Lee, A. Ngan, H. W. Jensen, and M. Gross. Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graph., 25(3):1013--1024, 2006.

Index Terms

  1. One-click white balance using human skin reflectance

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      GI '09: Proceedings of Graphics Interface 2009
      May 2009
      257 pages
      ISBN:9781568814704

      Sponsors

      • The Canadian Human-Computer Communications Society / Société Canadienne du Dialogue Humaine Machine (CHCCS/SCDHM)

      Publisher

      Canadian Information Processing Society

      Canada

      Publication History

      Published: 25 May 2009

      Author Tags

      1. color constancy
      2. computational photography
      3. white balance

      Qualifiers

      • Research-article

      Acceptance Rates

      GI '09 Paper Acceptance Rate 28 of 77 submissions, 36%;
      Overall Acceptance Rate 206 of 508 submissions, 41%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 424
        Total Downloads
      • Downloads (Last 12 months)35
      • Downloads (Last 6 weeks)11
      Reflects downloads up to 05 Mar 2025

      Other Metrics

      Citations

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media