skip to main content
10.1145/1772690.1772708acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Liquid query: multi-domain exploratory search on the web

Published: 26 April 2010 Publication History

Abstract

In this paper we propose the Liquid Query paradigm, to support users in finding responses to multi-domain queries through exploratory information seeking across structured information sources (Web documents, deep Web data, and personal data repositories), wrapped by means of a uniform notion of search service. Liquid Query aims at filling the gap between general-purpose search engines, which are unable to find information spanning multiple topics, and domain-specific search systems, which cannot go beyond their domain limits. The Liquid Query interface consists of interaction primitives that let users pose questions and explore results spanning over multiple sources incrementally, thus getting closer and closer to the sought information. We demonstrate our approach with a prototype built upon the YQL (Yahoo! Query Language) framework.

References

[1]
Aula, A., and Russell, D.M. Complex and Exploratory Web Search. ISSS: Information Seeking Support Systems Workshop (Chapel Hill, NC, USA, June 2008), 23--24.
[2]
Baeza-Yates, R.A. Applications of Web Query Mining. ECIR: European Conference on Information Retrieval, 2005, Springer LNCS 3408, 7--22.
[3]
Barbosa, L., and Freire, J. Siphoning hidden-web data through keyword-based interfaces. SBBD, 19th Brazilian symposium on databases, 2004, 309--321.
[4]
Bederson, B.B., and Shneiderman, B. The Craft of Information Visualization: Readings and Reflections. Morgan Kaufmann, 2003.
[5]
Braga, D., Campi, A., Ceri, S., Raffio, A. Joining the results of heterogeneous search engines, Information Systems, Vol. 33, Issues 7-8, 2008, Pages 658--680.
[6]
Braga, D., Ceri, S., Daniel, F., Martinenghi, D. Mashing Up Search Services. IEEE Internet Comp. 12(5) (2008), 16--23.
[7]
Brambilla, M., Cabot, J., Grossniklaus, M. Modelling safe interface interactions in web applications. In Conceptual Modeling - ER. Springer LNCS Vol. 5829, 387--400. (2009)
[8]
Broder, A. A taxonomy of web search. SIGIR Forum, 36(2):3--10, 2002.
[9]
Cafarella, M. J., Halevy, A., Zhang, Y., Wang, D. Z., and Wu, E. WebTables: Exploring the Power of Tables on the Web. In VLDB (Auckland, NZ, 2008), 538--549.
[10]
Ceri, S., Brambilla, M. (eds.). Search Computing Challenges and Directions. Springer LNCS vol. 5950, March 2010.
[11]
Clusty. http:// www.clusty.com/.
[12]
Dash, D., Rao, J., Megiddo, N., Ailamaki, A., and Lohman, G. 2008. Dynamic faceted search for discovery-driven analysis. 17th ACM Conference on information and Knowledge Management, CIKM '08. (Napa Valley, California, USA, October 26 - 30, 2008). ACM, 3--12.
[13]
DBLP Faceted Search. http://dblp.l3s.de/.
[14]
Google Base API. http://code.google.com/apis/base/.
[15]
Google Fusion Tables. http://tables.googlelabs.com/.
[16]
Google Squared. http://www.google.com/squared.
[17]
Hakia. http://hakia.com/.
[18]
Hunch. http://www.hunch.com/.
[19]
Inselberg, A. The Plane with Parallel Coordinates. Visual Computer 1 (4). Springer: 69--91. (1985)
[20]
Jansen, B.J., Booth, D.L., and Spink, A. Determining the user intent of web search engine queries. WWW Conf. 2007 (Banff, Canada): 1149--1150.
[21]
Jansen, B.J., Pooch, U.W. A review of Web searching studies and a framework for future research. JASIST (J. of Am. Soc. Inf. Science and Techn.) 52(3): 235--246 (2001)
[22]
Kules, B., Capra, R., Banta, M., and Sierra, T. What do exploratory searchers look at in a faceted search interface? JCDL, Joint Conference on Digital Libraries(2009). 313--322.
[23]
Kumar, R., and Tomkins, A. A Characterization of Online Search Behavior. Data Engineering Bullettin, June 2009, 32(2), 3--11.
[24]
Lee, U., Liu, Z., and Cho, J. Automatic identification of user goals in Web search. WWW 2005 (Chiba, Japan): 391--400.
[25]
Marchionini, G. Exploratory search: from finding to understanding. Communications ACM 49(4): 41--46 (2006).
[26]
Microsoft Bing. http://www.bing.com/.
[27]
OpenSearch. http://www.opensearch.org/.
[28]
Rajaraman, A. Kosmix: High Performance Topic Exploration using the Deep Web, VLDB 2009 (Lyon, France, 2009), Proceedings of VLDB 2(2): 1524--1529.
[29]
Rose, D.E., and Levinson, D. Understanding user goals in Web search. 13th WWW Conf. (New York, 2004), 13--19.
[30]
Sacco, G. M., and Tzitzikas, Y. Dynamic Taxonomies and Faceted Search: Theory, Practice, and Experience. Series: The Information Retrieval Series, Vol. 25, Springer 2009.
[31]
Shafer, J.C., Agrawal, R., and Lauw, H.W. Symphony: Enabling Search-Driven Applications, USETIM (Using Search Engine Technology for Information Management) Workshop, VLDB (Lyon, Aug. 2009).
[32]
Yahoo! Query Language. http://developer.yahoo.com/yql/
[33]
White, R. W., and Drucker, S. M. Investigating behavioral variability in web search. 16th WWW Conf. (Banff, Canada, 2007), 21--30.
[34]
White, R.W., Roth, R.A. Exploratory Search. Beyond the Query-Response Paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services Series, Gary Marchionini (ed.), vol. 3. Morgan & Claypool, 2009.
[35]
Wolfram Alpha. http://www.wolframalpha.com/.
[36]
Wu, W., Yu, C., Doan, A., and Meng, W. An interactive clustering-based approach to integrating source query interfaces on the deep Web. ACM SIGMOD (Paris, France, 2004), 95 -- 106, ISBN:1-58113-859-8.

Cited By

View all
  • (2022)A study of visually linked keywords to support exploratory browsing in academic searchJournal of the Association for Information Science and Technology10.1002/asi.2462373:8(1171-1191)Online publication date: 10-Feb-2022
  • (2021)Crowdsourced Linked Data Question Answering with AQUACOLD2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)10.1109/JCDL52503.2021.00043(297-298)Online publication date: Sep-2021
  • (2021)Dataset or Not? A Study on the Veracity of Semantic Markup for Dataset PagesThe Semantic Web – ISWC 202110.1007/978-3-030-88361-4_20(338-356)Online publication date: 30-Sep-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '10: Proceedings of the 19th international conference on World wide web
April 2010
1407 pages
ISBN:9781605587998
DOI:10.1145/1772690

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 April 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. exploratory search
  2. federated search engine
  3. multi-domain search
  4. search computing
  5. search engine
  6. search service
  7. web

Qualifiers

  • Research-article

Conference

WWW '10
WWW '10: The 19th International World Wide Web Conference
April 26 - 30, 2010
North Carolina, Raleigh, USA

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)1
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2022)A study of visually linked keywords to support exploratory browsing in academic searchJournal of the Association for Information Science and Technology10.1002/asi.2462373:8(1171-1191)Online publication date: 10-Feb-2022
  • (2021)Crowdsourced Linked Data Question Answering with AQUACOLD2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)10.1109/JCDL52503.2021.00043(297-298)Online publication date: Sep-2021
  • (2021)Dataset or Not? A Study on the Veracity of Semantic Markup for Dataset PagesThe Semantic Web – ISWC 202110.1007/978-3-030-88361-4_20(338-356)Online publication date: 30-Sep-2021
  • (2020)An Exploratory Interface for Dataset Repositories Using Cell-Centric Indexing2020 IEEE International Conference on Big Data (Big Data)10.1109/BigData50022.2020.9378057(5716-5718)Online publication date: 10-Dec-2020
  • (2018)Using the Web While OfflineHandbook of Research on Contemporary Perspectives on Web-Based Systems10.4018/978-1-5225-5384-7.ch006(108-124)Online publication date: 2018
  • (2018)Enhance e-learning system performance with a cloud and crowd-oriented approachInternational Journal of High Performance Computing and Networking10.1504/IJHPCN.2018.09384412:1(84-93)Online publication date: 1-Jan-2018
  • (2017)Modeling, Modeling, Modeling: From Web to Enterprise to Crowd to SocialA Comprehensive Guide Through the Italian Database Research Over the Last 25 Years10.1007/978-3-319-61893-7_14(235-251)Online publication date: 31-May-2017
  • (2016)Topic-Oriented Exploratory Search Based on an Indexing NetworkIEEE Transactions on Systems, Man, and Cybernetics: Systems10.1109/TSMC.2015.242148446:2(234-247)Online publication date: Feb-2016
  • (2016)Integration and Querying of Genomic and Proteomic Semantic Annotations for Biomedical Knowledge ExtractionIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2015.245394413:2(209-219)Online publication date: 1-Mar-2016
  • (2016)A survey on search results diversification techniquesNeural Computing and Applications10.1007/s00521-015-1945-527:5(1207-1229)Online publication date: 1-Jul-2016
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

EPUB

View this article in ePub.

ePub

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media