skip to main content
10.1145/1772690.1772780acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Exploiting query reformulations for web search result diversification

Published: 26 April 2010 Publication History

Abstract

When a Web user's underlying information need is not clearly specified from the initial query, an effective approach is to diversify the results retrieved for this query. In this paper, we introduce a novel probabilistic framework for Web search result diversification, which explicitly accounts for the various aspects associated to an underspecified query. In particular, we diversify a document ranking by estimating how well a given document satisfies each uncovered aspect and the extent to which different aspects are satisfied by the ranking as a whole. We thoroughly evaluate our framework in the context of the diversity task of the TREC 2009 Web track. Moreover, we exploit query reformulations provided by three major Web search engines (WSEs) as a means to uncover different query aspects. The results attest the effectiveness of our framework when compared to state-of-the-art diversification approaches in the literature. Additionally, by simulating an upper-bound query reformulation mechanism from official TREC data, we draw useful insights regarding the effectiveness of the query reformulations generated by the different WSEs in promoting diversity.

References

[1]
R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In Proc. of WSDM, pages 5--14, 2009.
[2]
G. Amati, E. Ambrosi, M. Bianchi, C. Gaibisso, and G. Gambosi. FUB, IASI-CNR and University of Tor Vergata at TREC 2007 Blog track. In Proc. of TREC, 2007.
[3]
R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza. Query recommendation using query logs in search engines. In Proc. of EDBT Workshops, pages 588--596, 2004.
[4]
P. Boldi, F. Bonchi, C. Castillo, and S. Vigna. From 'Dango' to 'Japanese cakes': query reformulation models and patterns. In Proc. of WI--IAT, pages 183--190, 2009.
[5]
J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proc. of SIGIR, pages 335--336, 1998.
[6]
B. Carterette. An analysis of NP-completeness in novelty and diversity ranking. In Proc. of ICTIR, pages 200--211, 2009.
[7]
B. Carterette and P. Chandar. Probabilistic models of ranking novel documents for faceted topic retrieval. In Proc. of CIKM, pages 1287--1296, 2009.
[8]
H. Chen and D. R. Karger. Less is more: probabilistic models for retrieving fewer relevant documents. In Proc. of SIGIR, pages 429--436, 2006.
[9]
C. L. A. Clarke, N. Craswell, and I. Soboroff. Preliminary report on the TREC 2009 Web track. In Proc. of TREC, 2009.
[10]
C. L. A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty and diversity in information retrieval evaluation. In Proc. of SIGIR, pages 659--666, 2008.
[11]
C. L. A. Clarke, M. Kolla, and O. Vechtomova. An effectiveness measure for ambiguous and underspecified queries. In Proc. of ICTIR, pages 188--199, 2009.
[12]
W. S. Cooper. The inadequacy of probability of usefulness as a ranking criterion for retrieval system output. Technical report, Univ. of California, 1971.
[13]
W. Goffman. On relevance as a measure. IP&M, 2(3):201--203, 1964.
[14]
S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In Proc. of WWW, pages 381--390, 2009.
[15]
B. He, C. Macdonald, I. Ounis, J. Peng, and R. L. T. Santos. University of Glasgow at TREC 2008: experiments in Blog, Enterprise, and Relevance Feedback tracks with Terrier. In Proc. of TREC, 2008.
[16]
M. A. Hearst. Search User Interfaces. Cambridge University Press, 2009.
[17]
D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis, Univ. of Twente, 2001.
[18]
D. S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Publishing Co., 1997.
[19]
B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life information retrieval: a study of user queries on the Web. SIGIR Forum, 32(1):5--17, 1998.
[20]
K. Jarvelin and J. Kekalainen. Cumulated gain-based evaluation of IR techniques. ACM TOIS, 20(4):422--446, 2002.
[21]
I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C. Lioma. Terrier: a high performance and scalable information retrieval platform. In Proc. of SIGIR, OSIR Workshop, 2006.
[22]
J. Peng, C. Macdonald, B. He, V. Plachouras, and I. Ounis. Incorporating term dependency in the DFR framework. In Proc. of SIGIR, pages 843--844, 2007.
[23]
F. Radlinski and S. Dumais. Improving personalized web search using result diversification. In Proc. of SIGIR, pages 691--692, 2006.
[24]
S. E. Robertson. The probability ranking principle in IR. Journal of Documentation, 33(4):294--304, 1977.
[25]
S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at TREC-3. In Proc. of TREC, 1994.
[26]
J. J. Rocchio. Relevance feedback in information retrieval. In The SMART Retrieval System, pages 313--323. 1971.
[27]
R. L. T. Santos, J. Peng, C. Macdonald, and I. Ounis. Explicit search result diversification through sub-queries. In Proc. of ECIR, 2010.
[28]
M. Shokouhi. Central-rank-based collection selection in uncooperative distributed information retrieval. In Proc. of ECIR, pages 160--172, 2007.
[29]
K. Sparck-Jones, S. E. Robertson, and M. Sanderson. Ambiguous requests: implications for retrieval tests, systems and theories. SIGIR Forum, 41(2):8--17, 2007.
[30]
J. Wang and J. Zhu. Portfolio theory of information retrieval. In Proc. of SIGIR, pages 115--122, 2009.
[31]
J. Yi and F. Maghoul. Query clustering using click-through graph. In Proc. of WWW, pages 1055--1056, 2009.
[32]
H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma. Learning to cluster Web search results. In Proc. of SIGIR, pages 210--217, 2004.
[33]
C. Zhai, W. W. Cohen, and J. Lafferty. Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In Proc. of SIGIR, pages 10--17, 2003.

Cited By

View all
  • (2025)Fairness and Diversity in Recommender Systems: A SurveyACM Transactions on Intelligent Systems and Technology10.1145/366492816:1(1-28)Online publication date: 3-Jan-2025
  • (2025)Web search result diversification by combining global and local document featuresApplied Soft Computing10.1016/j.asoc.2024.112543169(112543)Online publication date: Jan-2025
  • (2024)Passage-aware Search Result DiversificationACM Transactions on Information Systems10.1145/365367242:5(1-29)Online publication date: 13-May-2024
  • Show More Cited By

Index Terms

  1. Exploiting query reformulations for web search result diversification

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WWW '10: Proceedings of the 19th international conference on World wide web
    April 2010
    1407 pages
    ISBN:9781605587998
    DOI:10.1145/1772690

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 April 2010

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. diversity
    2. relevance
    3. web search

    Qualifiers

    • Research-article

    Conference

    WWW '10
    WWW '10: The 19th International World Wide Web Conference
    April 26 - 30, 2010
    North Carolina, Raleigh, USA

    Acceptance Rates

    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)87
    • Downloads (Last 6 weeks)6
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Fairness and Diversity in Recommender Systems: A SurveyACM Transactions on Intelligent Systems and Technology10.1145/366492816:1(1-28)Online publication date: 3-Jan-2025
    • (2025)Web search result diversification by combining global and local document featuresApplied Soft Computing10.1016/j.asoc.2024.112543169(112543)Online publication date: Jan-2025
    • (2024)Passage-aware Search Result DiversificationACM Transactions on Information Systems10.1145/365367242:5(1-29)Online publication date: 13-May-2024
    • (2024)Multi-grained Document Modeling for Search Result DiversificationACM Transactions on Information Systems10.1145/365285242:5(1-22)Online publication date: 27-Apr-2024
    • (2024)Intent-Oriented Dynamic Interest Modeling for Personalized Web SearchACM Transactions on Information Systems10.1145/363981742:4(1-30)Online publication date: 8-Jan-2024
    • (2024)Ranking with Slot ConstraintsProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3672000(956-967)Online publication date: 25-Aug-2024
    • (2024)Rethinking 'Complement' Recommendations at Scale with SIMDProceedings of the 15th ACM/SPEC International Conference on Performance Engineering10.1145/3629526.3645041(25-36)Online publication date: 7-May-2024
    • (2024)"In-Context Learning" or: How I learned to stop worrying and love "Applied Information Retrieval"Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657842(14-25)Online publication date: 10-Jul-2024
    • (2024)CL4DIV: A Contrastive Learning Framework for Search Result DiversificationProceedings of the 17th ACM International Conference on Web Search and Data Mining10.1145/3616855.3635851(171-180)Online publication date: 4-Mar-2024
    • (2024)Result Diversification in Search and Recommendation: A SurveyIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.338226236:10(5354-5373)Online publication date: Oct-2024
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    EPUB

    View this article in ePub.

    ePub

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media