skip to main content
10.1145/1772690.1772813acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
poster

Context-oriented web video tag recommendation

Published: 26 April 2010 Publication History

Abstract

Tag recommendation is a common way to enrich the textual annotation of multimedia contents. However, state-of-the-art recommendation methods are built upon the pair-wised tag relevance, which hardly capture the context of the web video, i.e., when who are doing what at where. In this paper we propose the context-oriented tag recommendation (CtextR) approach, which expands tags for web videos under the context-consistent constraint. Given a web video, CtextR first collects the multi-form WWW resources describing the same event with the video, which produce an informative and consistent context; and then, the tag recommendation is conducted based on the obtained context. Experiments on an 80,031 web video collection show CtextR recommends various relevant tags to web videos. Moreover, the enriched tags improve the performance of web video categorization.

References

[1]
B. Sigurbjornsson, and R. V. Zwol. Flickr tag recommendation based on Collective knowledge. In ACM WWW'08, pages 327--336, Beijing, China. 2008.
[2]
L. Wu, L. Yang, N. Yu, and X. S. Hua. Learning to tag. In ACM WWW'09, pages 361--370, Madrid, Spain, 2009.
[3]
J. Cao, Y. D. Zhang, Y. C. Song, Z. N. Chen, X. Zhang, and J. T. Li. MCG-WEBV: A Benchmark Dataset for Web Video Analysis. Technical Report, ICT-MCG-09-001, 2009.

Cited By

View all
  • (2023)Movie Tag Prediction System Using Machine LearningProceedings of Data Analytics and Management10.1007/978-981-19-7615-5_23(251-265)Online publication date: 25-Mar-2023
  • (2021)Generating High-quality Movie Tags from Social Reviews: A Learning-driven Approach2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics)10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00040(182-189)Online publication date: Dec-2021
  • (2020)Semantic Analysis of Videos for Tags Prediction and SegmentationIndustrial Internet of Things and Cyber-Physical Systems10.4018/978-1-7998-2803-7.ch014(296-307)Online publication date: 2020
  • Show More Cited By

Index Terms

  1. Context-oriented web video tag recommendation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WWW '10: Proceedings of the 19th international conference on World wide web
    April 2010
    1407 pages
    ISBN:9781605587998
    DOI:10.1145/1772690

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 April 2010

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. context-oriented
    2. social tagging
    3. tag recommendation
    4. web video

    Qualifiers

    • Poster

    Conference

    WWW '10
    WWW '10: The 19th International World Wide Web Conference
    April 26 - 30, 2010
    North Carolina, Raleigh, USA

    Acceptance Rates

    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 15 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Movie Tag Prediction System Using Machine LearningProceedings of Data Analytics and Management10.1007/978-981-19-7615-5_23(251-265)Online publication date: 25-Mar-2023
    • (2021)Generating High-quality Movie Tags from Social Reviews: A Learning-driven Approach2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics)10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00040(182-189)Online publication date: Dec-2021
    • (2020)Semantic Analysis of Videos for Tags Prediction and SegmentationIndustrial Internet of Things and Cyber-Physical Systems10.4018/978-1-7998-2803-7.ch014(296-307)Online publication date: 2020
    • (2020)Movie Tags Prediction and Segmentation Using Deep LearningIEEE Access10.1109/ACCESS.2019.29635358(6071-6086)Online publication date: 2020
    • (2020)Exploiting user reviews for automatic movie taggingMultimedia Tools and Applications10.1007/s11042-019-08513-0Online publication date: 6-Jan-2020
    • (2017)Context-Aware Recommender System: A Review of Recent Developmental Process and Future Research DirectionApplied Sciences10.3390/app71212117:12(1211)Online publication date: 5-Dec-2017
    • (2016)Context aware multimedia crawler for dynamic encyclopaedia construction2016 International Conference on Computer Communication and Informatics (ICCCI)10.1109/ICCCI.2016.7479957(1-12)Online publication date: Jan-2016
    • (2014)Class-based tag recommendation and user-based evaluation in online audio clip sharingKnowledge-Based Systems10.1016/j.knosys.2014.06.00367(131-142)Online publication date: 1-Sep-2014
    • (2014)Learning to annotate via social interaction analyticsKnowledge and Information Systems10.1007/s10115-013-0717-841:2(251-276)Online publication date: 1-Nov-2014
    • (2014)Multiple style exploration for story unit segmentation of broadcast news videoMultimedia Systems10.1007/s00530-013-0350-020:4(347-361)Online publication date: 1-Jul-2014
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    EPUB

    View this article in ePub.

    ePub

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media