skip to main content
10.1145/1871437.1871492acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Maximum normalized spacing for efficient visual clustering

Authors Info & Claims
Published:26 October 2010Publication History

ABSTRACT

In this paper, for efficient clustering of visual image data that have arbitrary mixture distributions, we propose a simple distance metric learning method called Maximum Normalized Spacing (MNS) which is a generalized principle based on Maximum Spacing [12] and Minimum Spanning Tree (MST). The proposed Normalized Spacing (NS) can be viewed as a kind of adaptive distance metric for contextual dissimilarity measure which takes into account the local distribution of the data vectors. Image clustering is a difficult task because there are multiple nonlinear manifolds embedded in the data space. Many of the existing clustering methods often fail to learn the whole structure of the multiple manifolds and they are usually not very effective. Combining both the internal and external statistics of clusters to capture the density structure of manifolds, MNS is capable of efficient and effective solving the clustering problem for the complex multi-manifold datasets in arbitrary metric spaces. We apply this MNS method into the practical problem of multi-view image clustering and obtain good results which are helpful for image browsing systems. Using the COIL-20 [19] and COIL-100 [18] multi-view image databases, our experimental results demonstrate the effectiveness of the proposed MNS clustering method and this clustering method is more efficient than the traditional clustering methods.

References

  1. D. Cai, X. He, Z. Li, W. Y. Ma, and J. R. Wen. Hierarchical clustering of www image search results using visual, textual and link information. ACM Multimedia 2004, pages 952--959, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity. Journal of the ACM, 47:1028--1047, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Y. Chen, J. Z. Wang, and R. Krovetz. Clue: cluster-based retrieval of images by unsupervised learning. IEEE Transactions on Image Processing, 14:1187--1201, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. OSDI 2004, pages 137--150, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph partitioning and data clustering. ICDM 2001, pages 107--114, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley & Sons Inc., 2nd edition, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Z. G. Fan, J. Li, B. Wu, and Y. Wu. Local patterns constrained image histograms for image retrieval. ICIP 2008, pages 941--944, 2008.Google ScholarGoogle Scholar
  8. P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. International Journal of Computer Vision, 59:167--181, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A survey of kernel and spectral methods for clustering. Pattern Recognition, 41:176--190, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972--976, 2007.Google ScholarGoogle Scholar
  11. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput. Surv., 31:264--323, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Kleinberg and E. Tardos. Algorithm design. Addison Wesley, 1st edition, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Levin, D. Lischinski, and Y. Weiss. A closed form solution to natural image matting. CVPR 2006, 1:61--68, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Li and J. Z. Wang. Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25:1075--1088, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Lim, J. Ho, M. Yang, K. Lee, and D. Kriegman. Image clustering with metric, local linear structure and affine symmetry. ECCV 2004, 1:456--468, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  16. Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation of multivariate mixed data via lossy data coding and compression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:1546--1562, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data sets with application to reference matching. KDD 2000, pages 169--178, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library (coil-100). Technical Report CUCS-006-96, 1996.Google ScholarGoogle Scholar
  19. S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library (coil-20). Technical Report CUCS-005-96, 1996.Google ScholarGoogle Scholar
  20. A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. NIPS 2001, pages 849--856, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. Pudil, J. Novovicova, and J. Kittler. Floating search methods in feature selection. Pattern Recognition Letters, 15:1119--1125, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323--2326, 2000.Google ScholarGoogle Scholar
  23. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:888--905, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Souvenir and R. Pless. Manifold clustering. ICCV 2005,1:648--653, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319--2323, 2000.Google ScholarGoogle Scholar
  26. K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision, 70:77--90, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Weiss. Segmentation using eigenvectors: a unifying view. ICCV 1999, 1:975--982, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16:645--678, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Y. Xu, V. Olman, and D. Xu. Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees. Bioinformatics, 18:536--545, 2002.Google ScholarGoogle Scholar
  30. D. Yankov and E. Keogh. Manifold clustering of shapes. ICDM 2006, 1:1167--1171, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. C. T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, 20:68--86, 1971. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. NIPS 2004, pages 1601--1608, 2004.Google ScholarGoogle Scholar
  33. S. Zhang, C. Shi, Z. Zhang, and Z. Shi. A global geometric approach for image clustering. ICPR 2006, 4:960--963, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Y. Zhao and G. Karypis. Evaluation of hierarchical clustering algorithms for document datasets. CIKM 2002, pages 515--524, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Maximum normalized spacing for efficient visual clustering

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CIKM '10: Proceedings of the 19th ACM international conference on Information and knowledge management
        October 2010
        2036 pages
        ISBN:9781450300995
        DOI:10.1145/1871437

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 26 October 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,861of8,427submissions,22%

        Upcoming Conference

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader