skip to main content
research-article

Spin-transfer torque magnetic random access memory (STT-MRAM)

Published:29 May 2013Publication History
Skip Abstract Section

Abstract

Spin-transfer torque magnetic random access memory (STT-MRAM) is a novel, magnetic memory technology that leverages the base platform established by an existing 100+nm node memory product called MRAM to enable a scalable nonvolatile memory solution for advanced process nodes. STT-MRAM features fast read and write times, small cell sizes of 6F2 and potentially even smaller, and compatibility with existing DRAM and SRAM architecture with relatively small associated cost added. STT-MRAM is essentially a magnetic multilayer resistive element cell that is fabricated as an additional metal layer on top of conventional CMOS access transistors. In this review we give an overview of the existing STT-MRAM technologies currently in research and development across the world, as well as some specific discussion of results obtained at Grandis and with our foundry partners. We will show that in-plane STT-MRAM technology, particularly the DMTJ design, is a mature technology that meets all conventional requirements for an STT-MRAM cell to be a nonvolatile solution matching DRAM and/or SRAM drive circuitry. Exciting recent developments in perpendicular STT-MRAM also indicate that this type of STT-MRAM technology may reach maturity faster than expected, allowing even smaller cell size and product introduction at smaller nodes.

References

  1. Abraham, D., Trouilloud, P., and Worledge, D. 2006. Rapid-turnaround characterization methods for MRAM development. IBM J. Res. Dev. 50, 1, 67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Albert, F., Katine, J., Buhrman, R., and Ralph, D. 2000. Spin-polarized current switching of a Co thin film nanomagnet. Appl. Phys. Lett. 77, 23, 3809.Google ScholarGoogle ScholarCross RefCross Ref
  3. Apalkov, D., Watts, S., Driskill-Smith, A., Chen, E., Diao, Z., and Nikitin, V. 2010. Comparison of scaling of in-plane and perpendicular spin transfer switching technologies by micromagnetic simulation. IEEE Trans. Magn. 46, 6, 2240--2243.Google ScholarGoogle ScholarCross RefCross Ref
  4. Apalkov, D., Watts, S., et al. 2010. Spin transfer switching efficiency in magnetic tunneling junctions with dual barriers. In Proceedings of the Annual Magnetism and Magnetic Materials Conference.Google ScholarGoogle Scholar
  5. Berger, L. 1996. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 13, 9353--9358.Google ScholarGoogle ScholarCross RefCross Ref
  6. Butler, W. H., Zhang, X.-G., and Schulthess, T. C. 2001. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B, 63, 5, 054416.Google ScholarGoogle Scholar
  7. Chen, E., Apalkov, D., et al. 2010. Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 46, 6, 1873--1878.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chen, Y., Li, H., Wang, X., Zhu, W., Xu, W., and Zhang, T. 2010. Combined magnetic- and circuit-level enhancements for the nondestructive self-reference scheme of STT-MRAM. In Proceedings of the International Symposium on Low Power Electronics and Design. 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chung, S., Rho, K., et al. 2010. Fully integrated 54nm STTRAM with the smallest bit cell dimension for high density memory application. In Proceedings of the IEEE International Electron Devices Meeting. 304--307.Google ScholarGoogle Scholar
  10. Daibou, T., Yoshikawa, M. et al. 2010. Spin transfer torque switching in perpendicular magnetic tunnel junctions using L1zero ordered FePd. In Proceedings of the Joint MMM-Intermag Conference.Google ScholarGoogle Scholar
  11. Diao, Z., Apalkov, D., Pakala, M., Ding, Y., Panchula, A., and Huai, Y. 2005. Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlO{sub x} barriers. Appl. Phys. Lett. 87, 23, 232502.Google ScholarGoogle ScholarCross RefCross Ref
  12. Diao, Z., Panchula, A., et al. 2007. Spin transfer switching in dual MgO magnetic tunnel junctions. Appl. Phys. Lett. 90, 13, 132508.Google ScholarGoogle ScholarCross RefCross Ref
  13. Fukami, S., Suzuki, T., et al. 2009. Low-current perpendicular domain wall motion cell for scalable high-speed MRAM. In Proceedings of the Symposium on VLSI Technology.Google ScholarGoogle Scholar
  14. Hosomi, M., Yamagishi, H., et al. 2005. A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram. In Proceedings of the IEEE International Electron Devices Meeting. 473.Google ScholarGoogle ScholarCross RefCross Ref
  15. Huai, Y., Albert, F., Nguyen, P., Pakala, M., and Valet, T. 2004. Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 16, 8.Google ScholarGoogle ScholarCross RefCross Ref
  16. Ikeda, S., Miura, K., et al. 2010. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9, 8, 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  17. Ishigaki, T., Kawahara, T., Takemura, R., Ono, K., Ito, K., Matsuoka, H., and Ohno, H. 2010. A multi-level-cell spin-transfer torque memory with series-stacked magnetotunnel junctions. In Proceedings of the Symposium on VLSI Technology. 234--235.Google ScholarGoogle Scholar
  18. Johnson, M., Bloemen, P., Broeder, F. J. A., and Vries, J. J. 1996. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409.Google ScholarGoogle ScholarCross RefCross Ref
  19. Johnson, M. T., Jungblut, R., and Kelly, P. J. 1995. Perpendicular magnetic anisotropy of multilayers - recent insights. Science 148, 118--124.Google ScholarGoogle Scholar
  20. Katine, J., Albert, F., Buhrman, R., Myers, E., and Ralph, D. 2000. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 14, 3149--3152.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kawahara, T., Miura, K., et al. 2007. 2Mb SPRAM design: Bi-directional current write and parallelizing-direction current read schemes based on spin-transfer torque switching. In Proceedings of the IEEE International Conference on Integrated Circuit Design and Technology. 238--241.Google ScholarGoogle Scholar
  22. Kent, A. D., Özyilmaz, B., and Del Barco, E. 2004. Spin-transfer-induced precessional magnetization reversal. Appl. Phys. Lett. 84, 19, 3897.Google ScholarGoogle ScholarCross RefCross Ref
  23. Koch, R. H., Katine, J. A., and Sun, J. Z. 2004. Time-resolved reversal of spin-transfer switching in a nanomagnet. Phys. Rev. Lett. 92, 8, 2--5.Google ScholarGoogle ScholarCross RefCross Ref
  24. Kugler, Z., Drewello, V., Schäfers, M., Schmalhorst, J., Reiss, G., and Thomas, A. 2011. Temperature and bias voltage dependence of Co/Pd multilayer-based magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 323, 2, 198--201.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lee, Y. M., Hayakawa, J., Ikeda, S., Matsukura, F., and Ohno, H. 2007. Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl. Phys. Lett. 90, 21, 212507.Google ScholarGoogle ScholarCross RefCross Ref
  26. Lee, Y. M., Yoshida, C., Tsunoda, K., Umehara, S., Aoki, M., and Sugii, T. 2010. Highly scalable STTMRAM with MTJs of top-pinned structure in 1T/1MTJ Cell. In Proceedings of the Symposium on VLSI Technology. 49--50.Google ScholarGoogle Scholar
  27. Lin, C. J., Kang, S. H., et al. 2009. 45nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ Cell. In Proceedings of the IEEE International Electron Devices Meeting. 279--282.Google ScholarGoogle ScholarCross RefCross Ref
  28. Mangin, S., Ravelosona, D., Katine, J. A., Carey, M. J., Terris, B. D., and Fullerton, E. E. 2006. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 3, 210--215.Google ScholarGoogle ScholarCross RefCross Ref
  29. Morise, H., and Nakamura, S. 2006. Relaxing-precessional magnetization switching. J. Magn. Magn. Mater. 306, 2, 260--264.Google ScholarGoogle ScholarCross RefCross Ref
  30. Nakayama, M., Kai, T., et al. 2008. Spin transfer switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Appl. Phys. 103, 7, 07A710.Google ScholarGoogle ScholarCross RefCross Ref
  31. Parkin, S. S. P., Kaiser, C., Panchula, A., Rice, P. M., Hughes, B., Samant, M., and Yang, S.-H. 2004. Giant tunnelling magnetoresistance at room temperature with MgO 100 tunnel barriers. Nat. Mater. 3, 12, 862--7.Google ScholarGoogle ScholarCross RefCross Ref
  32. Prejbeanu, I. L., Kerekes, M., Sousa, R. C., Sibuet, H., Redon, O., Dieny, B., and Nozières, J. P. 2007. Thermally assisted MRAM. J. Phys. Condens. Matter 19, 16, 165218.Google ScholarGoogle ScholarCross RefCross Ref
  33. Seki, T., Mitani, S., Yakushiji, K., and Takanashi, K. 2006. Magnetization switching in nanopillars with FePt alloys by spin-polarized current. J. Appl. Phys. 99, 8, 08G521.Google ScholarGoogle ScholarCross RefCross Ref
  34. Slonczewski, J. 1996. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, 1, L1.Google ScholarGoogle ScholarCross RefCross Ref
  35. Sun, J. 2000. Spin-current interaction with a monodomain magnetic body: A model study. Phys. Rev. B 62, 1, 570--578.Google ScholarGoogle ScholarCross RefCross Ref
  36. Tehrani, S., Slaughter, J., et al. 2003. Magnetoresistive random access memory using magnetic tunnel junctions. Proc. IEEE 91, 5, 703--714.Google ScholarGoogle ScholarCross RefCross Ref
  37. Theodonis, I., Kalitsov, A., and Kioussis, N. 2007. Spin transfer torque in double barrier magnetic tunnel junctions. J. Magn. Magn. Mater., 310, 2, 2043--2045.Google ScholarGoogle ScholarCross RefCross Ref
  38. Wolf, S., Awschalom, D., Buhrman, R., Daughton, J., Von Molnar, S., Roukes, M., Chtchelkanova, A., and Treger, D. M. 2001. Spintronics: A spin-based electronics vision for the future. Science 294, 5546, 1488.Google ScholarGoogle ScholarCross RefCross Ref
  39. Worledge, D. C., Hu, G., et al. 2010. Switching distributions and write reliability of perpendicular spin torque MRAM. In Proceedings of the IEEE International Electron Devices Meeting. 296--299.Google ScholarGoogle ScholarCross RefCross Ref
  40. Worledge, D. C., Hu, G., et al. 2011. Spin torque switching of perpendicular Ta|CoFeB|MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 98, 2, 022501.Google ScholarGoogle ScholarCross RefCross Ref
  41. Yoda, H., Kishi, et al. 2010. High efficient spin transfer torque writing on perpendicular magnetic tunnel junctions for high density MRAMs. Curr. Appl. Phys. 10, 1, e87--e89.Google ScholarGoogle ScholarCross RefCross Ref
  42. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., and Ando, K. 2004. Giant room-temperature magnetoresistance in single-crystal Fe/MgO MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 12, 868--71.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Spin-transfer torque magnetic random access memory (STT-MRAM)

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 9, Issue 2
      Special issue on memory technologies
      May 2013
      133 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/2463585
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 May 2013
      • Revised: 1 October 2011
      • Accepted: 1 October 2011
      • Received: 1 June 2011
      Published in jetc Volume 9, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader