skip to main content
10.1145/2466533.2466541acmconferencesArticle/Chapter ViewAbstractPublication Pagesweb3dConference Proceedingsconference-collections
research-article

Compression-domain seamless multiresolution visualization of gigantic triangle meshes on mobile devices

Published:20 June 2013Publication History

ABSTRACT

We present a software architecture for distributing and rendering gigantic 3D triangle meshes on common handheld devices. Our approach copes with strong bandwidth and hardware capabilities limitations in terms with a compression-domain adaptive multiresolution rendering approach. The method uses a regular conformal hierarchy of tetrahedra to spatially partition the input 3D model and to arrange mesh fragments at different resolution. We create compact GPU-friendly representations of these fragments by constructing cache-coherent strips that index locally quantized vertex data, exploiting the bounding tetrahedron for creating local barycentic parametrization of the geometry. For the first time, this approach supports local quantization in a fully adaptive seamless 3D mesh structure. For web distribution, further compression is obtained by exploiting local data coherence for entropy coding. At run-time, mobile viewer applications adaptively refine a local multiresolution model maintained in a GPU by asynchronously loading from a web server the required fragments. CPU and GPU cooperate for decompression, and a shaded rendering of colored meshes is performed at interactive speed directly from an intermediate compact representation using only 8bytes/vertex, therefore coping with both memory and bandwidth limitations. The quality and performance of the approach is demonstrated with the interactive exploration of gigatriangle-sized models on common mobile platforms.

Skip Supplemental Material Section

Supplemental Material

p99-rodriguez.mp4

mp4

16.8 MB

References

  1. Alliez, P., and Gotsman, C. 2003. Recent advances in compression of 3D meshes. In Advances in Multiresolution for Geometric Modelling, Springer-Verlag, 3--26.Google ScholarGoogle Scholar
  2. Balsa Rodriguez, M., Gobbetti, E., Marton, F., Pintus, R., Pintore, G., and Tinti, A. 2012. Interactive exploration of gigantic point clouds on mobile devices. In The 14th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, 57--64.Google ScholarGoogle Scholar
  3. Blume, A., Chun, W., Kogan, D., Kokkevis, V., Weber, N., Petterson, R., and Zeiger, R. 2011. Google Body: 3D human anatomy in the browser. In ACM SIGGRAPH 2011 Talks, ACM, 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Borgeat, L., Godin, G., Blais, F., Massicotte, P., and Lahanier, C. 2005. GoLD: interactive display of huge colored and textured models. ACM Trans. Graph. 24, 3 (July), 869--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Calver, D. 2002. Vertex decompression in a shader. ShaderX: Vertex and Pixel Shader Tips and Tricks, 172--187.Google ScholarGoogle Scholar
  6. Capin, T., Pulli, K., and Akenine-Moller, T. 2008. The state of the art in mobile graphics research. Computer Graphics and Applications, IEEE 28, 4, 74--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chhugani, J., and Kumar, S. 2007. Geometry engine optimization: cache friendly compressed representation of geometry. In Proceedings of the 2007 symposium on Interactive 3D graphics and games, ACM, New York, NY, USA, I3D '07, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., and Scopigno, R. 2004. Adaptive TetraPuzzles -- efficient out-of-core construction and visualization of gigantic polygonal models. ACM Trans. Graph. 23, 3 (August). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., and Scopigno, R. 2005. Batched multi triangulation. In Proceedings IEEE Visualization, IEEE Computer Society Press, Conference held in Minneapolis, MI, USA, 207--214.Google ScholarGoogle Scholar
  10. Gobbetti, E., and Marton, F. 2004. Layered point clouds. In Proc. Eurographics Symposium on Point Based Graphics, 113--120,227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gobbetti, E., and Marton, F. 2004. Layered point clouds: A simple and efficient multiresolution structure for distributing and rendering gigantic point-sampled models. Computers & Graphics 28, 1 (February), 815--826. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gobbetti, E., Kasik, D., and Yoon, S.-e. 2008. Technical strategies for massive model visualization. In Proceedings of the 2008 ACM symposium on Solid and physical modeling, ACM, New York, NY, USA, SPM '08, 405--415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gobbetti, E., Marton, F., Balsa Rodriguez, M., Ganovelli, F., and Di Benedetto, M. 2012. Adaptive Quad Patches: an adaptive regular structure for web distribution and adaptive rendering of 3D models. In Proc. ACM Web3D International Symposium, ACM Press, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Goswami, P., Erol, F., Mukhi, R., Pajarola, R., and Gobbetti, E. 2013. An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees. The Visual Computer 29, 1, 69--83.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hoppe, H. 1997. View-dependent refinement of progressive meshes. In Proc. SIGGRAPH, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. ISTI-CNR Visual Computing Lab, 2012. MeshLab for iOS: A powerful easy-to-use 3D mesh viewer for iPad and iPhone. www.meshpad.org.Google ScholarGoogle Scholar
  17. Jovanova, B., Preda, M., and Preteux, F. 2008. MPEG-4 Part 25: A generic model for 3D graphics compression. In Proc. 3DTV, IEEE, 101--104.Google ScholarGoogle Scholar
  18. Jovanova, B., Preda, M., and Preteux, F. 2009. MPEG-4 Part 25: A graphics compression framework for xml-based scene graph formats. Image Commun. 24, 1-2 (Jan.), 101--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, H., Lavoué, G., and Dupont, F. 2009. Adaptive coarse-to-fine quantization for optimizing rate-distortion of progressive mesh compression. In Proc. VMV, 73--82.Google ScholarGoogle Scholar
  20. Lee, J., Choe, S., and Lee, S. 2010. Compression of 3D mesh geometry and vertex attributes for mobile graphics. Journal of Computing Science and Engineering 4, 3, 207--224.Google ScholarGoogle ScholarCross RefCross Ref
  21. Luebke, D., and Erikson, C. 1997. View-dependent simplification of arbitrary polygonal environments. In Proc. SIGGRAPH, 199--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Maglo, A., Lee, H., Lavoué, G., Mouton, C., Hudelot, C., and Dupont, F. 2010. Remote scientific visualization of progressive 3D meshes with X3D. In Proc. Web3D, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Malvar, H. S., Sullivan, G. J., and Srinivasan, S. 2008. Lifting-based reversible color transformations for image compression. 707307--707307-10.Google ScholarGoogle Scholar
  24. Marion, P., 2012. Point cloud streaming to mobile devices with real-time visualization. www.pointclouds.org.Google ScholarGoogle Scholar
  25. Martin, G. N. N. 1979. Range encoding: an algorithm for removing redundancy from a digitised message. In Video and Data Recording Conference.Google ScholarGoogle Scholar
  26. Meyer, Q., Suessmuth, J., Sussner, G., Stamminger, M., and Greiner, G. 2010. On floating-point normal vectors. Computer Graphics Forum 29, 4, 1405--1409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Meyer, Q., Keinert, B., Sussner, G., and Stamminger, M. 2012. Data-parallel decompression of triangle mesh topology. Computer Graphics Forum 31, 8 (Dec.), 2541--2553. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Niebling, F., Kopecki, A., and Becker, M. 2010. Collaborative steering and post-processing of simulations on hpc resources: Everyone, anytime, anywhere. In Proceedings of the 15th International Conference on Web 3D Technology, ACM, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Peng, J., Kim, C.-S., and Jay Kuo, C. C. 2005. Technologies for 3D mesh compression: A survey. J. Vis. Comun. Image Represent. 16, 6 (Dec.), 688--733. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pintus, R., Gobbetti, E., and Callieri, M. 2011. Fast low-memory seamless photo blending on massive point clouds using a streaming framework. ACM Journal on Computing and Cultural Heritage 4, 2, Article 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Purnomo, B., Bilodeau, J., Cohen, J. D., and Kumar, S. 2005. Hardware-compatible vertex compression using quantization and simplification. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, ACM, 53--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Rossignac, J. 2001. 3D compression made simple: Edgebreaker with Zip&Wrap on a corner-table. In Proceedings of the International Conference on Shape Modeling & Applications, IEEE Computer Society, Washington, DC, USA, SMI '01, 278--. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Senecal, J. G., Lindstrom, P., Duchaineau, M. A., and Joy, K. I. 2004. An improved N-bit to N-bit reversible Haar-like transform. In 12th Pacific Conference on Computer Graphics and Applications, 371--380. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Taubin, G., and Rossignac, J. 1998. Geometric compression through topological surgery. ACM Trans. Graph. 17, 2 (Apr.), 84--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Taubin, G., Guéziec, A., Horn, W., and Lazarus, F. 1998. Progressive forest split compression. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH '98, 123--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Weiss, K., and De Floriani, L. 2010. Simplex and diamond hierarchies: Models and applications. In Eurographics 2010 - State of the Art Reports, Eurographics Association, Norrkping, Sweden, H. Hauser and E. Reinhard, Eds., 113--136.Google ScholarGoogle Scholar
  37. Xia, J., and Varshney, A. 1996. Dynamic view-dependent simplification for polygonal models. In Proc. IEEE Visualization, 327--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yoon, S.-E., Salomon, B., Gayle, R., and Manocha, D. 2004. Quick-vdr: Interactive view-dependent rendering of massive models. In Proceedings of the conference on Visualization '04, IEEE Computer Society, Washington, DC, USA, VIS '04, 131--138. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Compression-domain seamless multiresolution visualization of gigantic triangle meshes on mobile devices

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            Web3D '13: Proceedings of the 18th International Conference on 3D Web Technology
            June 2013
            220 pages
            ISBN:9781450321334
            DOI:10.1145/2466533

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 20 June 2013

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate27of71submissions,38%

            Upcoming Conference

            WEB3D '24
            The 29th International ACM Conference on 3D Web Technology
            September 25 - 27, 2024
            Guimarães , Portugal

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader