skip to main content
10.1145/2543651.2543669acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Coarse-grained multiresolution structures for mobile exploration of gigantic surface models

Published:19 November 2013Publication History

ABSTRACT

We discuss our experience in creating scalable systems for distributing and rendering gigantic 3D surfaces on web environments and common handheld devices. Our methods are based on compressed streamable coarse-grained multiresolution structures. By combining CPU and GPU compression technology with our multiresolution data representation, we are able to incrementally transfer, locally store and render with unprecedented performance extremely detailed 3D mesh models on WebGL-enabled browsers, as well as on hardware-constrained mobile devices.

References

  1. Alliez, P., and Gotsman, C. 2003. Recent advances in compression of 3D meshes. In Advances in Multiresolution for Geometric Modelling, Springer-Verlag, 3--26.Google ScholarGoogle Scholar
  2. Balsa Rodriguez, M., Gobbetti, E., Marton, F., Pintus, R., Pintore, G., and Tinti, A. 2012. Interactive exploration of gigantic point clouds on mobile devices. In The 14th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, 57--64.Google ScholarGoogle Scholar
  3. Balsa Rodriguez, M., Gobbetti, E., Marton, F., and Tinti, A. 2013. Compression-domain seamless multiresolution visualization of gigantic meshes on mobile devices. In Proc. ACM Web3D, 99--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blume, A., Chun, W., Kogan, D., Kokkevis, V., Weber, N., Petterson, R., and Zeiger, R. 2011. Google Body: 3D human anatomy in the browser. In ACM SIGGRAPH 2011 Talks, 19: 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Borgeat, L., Godin, G., Blais, F., Massicotte, P., and Lahanier, C. 2005. GoLD: interactive display of huge colored and textured models. ACM Trans. Graph. 24, 3, 869--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Calver, D. 2002. Vertex decompression in a shader. ShaderX: Vertex and Pixel Shader Tips and Tricks, 172--187.Google ScholarGoogle Scholar
  7. Capin, T., Pulli, K., and Akenine-Moller, T. 2008. The state of the art in mobile graphics research. IEEE Computer Graphics and Applications 28, 4, 74--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., and Scopigno, R. 2004. Adaptive TetraPuzzles -- efficient out-of-core construction and visualization of gigantic polygonal models. ACM Trans. Graph. 23, 3, 796--803. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., and Scopigno, R. 2005. Batched multi triangulation. In Proc. IEEE Visualization, 207--214.Google ScholarGoogle Scholar
  10. Dyken, C., Reimers, M., and Seland, J. 2009. Semiuniform adaptive patch tessellation. Computer Graphics Forum 28, 8, 255--263.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gobbetti, E., and Marton, F. 2004. Layered point clouds. In Proc. Eurographics Symposium on Point Based Graphics, 113--120, 227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gobbetti, E., and Marton, F. 2004. Layered point clouds: A simple and efficient multiresolution structure for distributing and rendering gigantic point-sampled models. Computers & Graphics 28, 1, 815--826. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gobbetti, E., Kasik, D., and Yoon, S.-E. 2008. Technical strategies for massive model visualization. In Proc. ACM SPM, 405--415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gobbetti, E., Marton, F., Balsa Rodriguez, M., Ganovelli, F., and Di Benedetto, M. 2012. Adaptive Quad Patches: an adaptive regular structure for web distribution and adaptive rendering of 3D models. In Proc. ACM Web3D, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Goswami, P., Erol, F., Mukhi, R., Pajarola, R., and Gobbetti, E. 2013. An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees. The Visual Computer 29, 1, 69--83.Google ScholarGoogle ScholarCross RefCross Ref
  16. Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. ACM Trans. Graph. 21, 3, 355--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hoppe, H. 1997. View-dependent refinement of progressive meshes. In Proc. ACM SIGGRAPH, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. ISTI-CNR Visual Computing Lab, 2012. MeshLab for iOS: A powerful easy-to-use 3D mesh viewer for iPad and iPhone. www.meshpad.org.Google ScholarGoogle Scholar
  19. Jovanova, B., Preda, M., and Preteux, F. 2009. MPEG-4 Part 25: A graphics compression framework for xml-based scene graph formats. Image Commun. 24, 1--2, 101--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proc. SGP, 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lee, H., Lavoué, G., and Dupont, F. 2009. Adaptive coarse-to-fine quantization for optimizing rate-distortion of progressive mesh compression. In Proc. VMV, 73--82.Google ScholarGoogle Scholar
  22. Lee, J., Choe, S., and Lee, S. 2010. Compression of 3D mesh geometry and vertex attributes for mobile graphics. Journal of Computing Science and Engineering 4, 3, 207--224.Google ScholarGoogle ScholarCross RefCross Ref
  23. Luebke, D., and Erikson, C. 1997. View-dependent simplification of arbitrary polygonal environments. In Proc. ACM SIGGRAPH, 199--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Maglo, A., Lee, H., Lavoué, G., Mouton, C., Hudelot, C., and Dupont, F. 2010. Remote scientific visualization of progressive 3D meshes with X3D. In Proc. ACM Web3D, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Marion, P., 2012. Point cloud streaming to mobile devices with real-time visualization. www.pointclouds.org.Google ScholarGoogle Scholar
  26. Meyer, Q., Suessmuth, J., Sussner, G., Stamminger, M., and Greiner, G. 2010. On floating-point normal vectors. Computer Graphics Forum 29, 4, 1405--1409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Niebling, F., Kopecki, A., and Becker, M. 2010. Collaborative steering and post-processing of simulations on hpc resources: Everyone, anytime, anywhere. In Proc. ACM Web3D, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Peng, J., Kim, C.-S., and Jay Kuo, C. C. 2005. Technologies for 3D mesh compression: A survey. J. Vis. Comun. Image Represent. 16, 6, 688--733. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pietroni, N., Tarini, M., and Cignoni, P. 2010. Almost isometric mesh parameterization through abstract domains. IEEE Transactions on Visualization and Computer Graphics 16, 4, 621--635. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Purnomo, B., Bilodeau, J., Cohen, J. D., and Kumar, S. 2005. Hardware-compatible vertex compression using quantization and simplification. In Proc. ACM Graphics Hardware, 53--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sander, P. V., Wood, Z. J., Gortler, S. J., Snyder, J., and Hoppe, H. 2003. Multi-chart geometry images. In Proc. SGP, 146--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Taubin, G., and Rossignac, J. 1998. Geometric compression through topological surgery. ACM Trans. Graph. 17, 2, 84--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Taubin, G., Guéziec, A., Horn, W., and Lazarus, F. 1998. Progressive forest split compression. In Proc. ACM SIGGRAPH, 123--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Weiss, K., and De Floriani, L. 2010. Simplex and diamond hierarchies: Models and applications. In Eurographics 2010 - State of the Art Reports, 113--136.Google ScholarGoogle Scholar
  35. Xia, J., and Varshney, A. 1996. Dynamic view-dependent simplification for polygonal models. In Proc. IEEE Visualization, 327--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yoon, S.-E., Salomon, B., Gayle, R., and Manocha, D. 2004. Quick-vdr: Interactive view-dependent rendering of massive models. In Proc. IEEE Visualization, 131--138. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Coarse-grained multiresolution structures for mobile exploration of gigantic surface models

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SA '13: SIGGRAPH Asia 2013 Symposium on Mobile Graphics and Interactive Applications
        November 2013
        90 pages
        ISBN:9781450326339
        DOI:10.1145/2543651

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 November 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate178of869submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader