skip to main content
10.1145/2556288.2557324acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Towards accurate and practical predictive models of active-vision-based visual search

Published:26 April 2014Publication History

ABSTRACT

Being able to predict the performance of interface designs using models of human cognition and performance is a long-standing goal of HCI research. This paper presents recent advances in cognitive modeling which permit increasingly realistic and accurate predictions for visual human-computer interaction tasks such as icon search by incorporating an "active vision" approach which emphasizes eye movements to visual features based on the availability of features in relationship to the point of gaze. A high fidelity model of a classic visual search task demonstrates the value of incorporating visual acuity functions into models of visual performance. The features captured by the high-fidelity model are then used to formulate a model simple enough for practical use, which is then implemented in an easy-to-use GLEAN modeling tool. Easy-to-use predictive models for complex visual search are thus feasible and should be further developed.

References

  1. Anstis, S. M. (1974). A chart demonstrating variations in acuity with retinal position. Vision Research, 14(7), 589--592.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bellamy, R., John, B., & Kogan, S. (2011). Deploying CogTool: Integrating quantitative usability assessment into real-world software development. In Proceedings of the 2011 International Conference on Software Engineering, 691--700. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Callander, M., & Zorman, L. (2007). Usability on patrol. In CHI '07 Extended Abstracts, 1709--1714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cockburn, A., & Gutwin, C. (2009). A predictive model of human performance with scrolling and hierarchical lists. Human-Computer Interaction, 24(3), 273--314.Google ScholarGoogle ScholarCross RefCross Ref
  6. Findlay, J. M., & Gilchrist, I. D. (2003). Active Vision: The Psychology of Looking and Seeing. Oxford University Press.Google ScholarGoogle Scholar
  7. Fleetwood, M. D., & Byrne, M. D. (2006). Modeling the visual search of displays: A revised ACT-R/PM model of icon search based on eye tracking data. Human-Computer Interaction, 21(2), 153--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gordon, J., & Abramov, I. (1977). Color vision in the peripheral retina. II. Hue and saturation. J. Opt. Soc. Am., 67(2), 202--207.Google ScholarGoogle ScholarCross RefCross Ref
  9. Halverson, T., & Hornof, A. J. (2011). A computational model of "active vision" for visual search in humancomputer interaction. Human-Computer Interaction, 26(4), 285'314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Henderson, J. M., & Castelhano, M. S. (2005). Eye movements and visual memory for scenes. In G. Underwood (Ed.), Cognitive Processes in Eye Guidance. (pp. 213--35). Oxford University Press.Google ScholarGoogle Scholar
  11. Hornof, A. J., & Kieras, D. E. (1997). Cognitive modeling reveals menu search is both random and systematic. In Proceedings of CHI '97, 107--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. John, B., Starr, S., & Utesch, B. (2012). Experiences with collaborative, distributed predictive human performance modeling. In CHI '12 Ext. Abs., 437--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. John, B. E., & Kieras, D. E. (1996). Using GOMS for user interface design and evaluation: Which technique' ACM Transactions on Computer-Human Interaction, 3(4), 287--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K. (2004). Predictive human performance modeling made easy. In Proceedings of CHI 2004, 455--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kieras, D. (2009). The persistent visual store as the locus of 'xation memory in visual search tasks. In R. Cooper & D. Peebles (Eds.), Proceedings of the Ninth International Conference on Cognitive Modeling, UK.Google ScholarGoogle Scholar
  16. Kieras, D. (2010). Modeling visual search of displays of many objects: The role of differential acuity and 'xation memory. In D. D. Salvucci & G. Gunzelmann (Eds.) Proceedings of the 10th International Conference on Cognitive Modeling, August 6--8, 2010, Philadelphia.Google ScholarGoogle Scholar
  17. Kieras, D. E. (2007). Model-based evaluation. In J. A. Jacko & A. Sears (Eds.), The Human-Computer Interaction Handbook (2nd ed.). (pp. 1191--208). Mahwah, NJ: Lawrence Erlbaum Associates.Google ScholarGoogle Scholar
  18. Kieras, D. E., & Marshall, S. P. (2006). Visual availability and 'xation memory in modeling visual search using the EPIC architecture. In Proceedings of the Annual Meeting of the Cognitive Science Society, 423--428.Google ScholarGoogle Scholar
  19. Kieras, D. E. (2004). The EPIC Architecture: Principles of Operation. Retrieved from http:// www.eecs.umich.edu/~kieras/docs/EPIC/ EPICPrinOp.pdfGoogle ScholarGoogle Scholar
  20. Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction, 12(4), 391--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kieras, D. E., Wood, S. D., Abotel, K., & Hornof, A. (1995). GLEAN: A computer-based tool for rapid GOMS model usability evaluation of user interface designs. In Proceedings of UIST '95, ACM, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Maeda, J. (2013, June 12). The future of design is more than making Apple iOS 'at. Wired Magazine. Retrieved from http://www.wired.com/opinion/2013/06/thefuture-of-design-is-more-than-making-apple-ios--at/Google ScholarGoogle Scholar
  23. Osga, G., Van Orden K., Campbell, N., Kellmeyer, D., and Lulue D. (2002). Design and Evaluation of War'ghter Task Support Methods in a Multi-Modal Watchstation. Space & Naval Warfare Center, San Diego, Technical Report 1874.Google ScholarGoogle Scholar
  24. Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12(4), 287--292.Google ScholarGoogle ScholarCross RefCross Ref
  25. Salvucci, D. D., Zuber, M., Beregovaia, E., & Markley, D. (2005). Distract-R: Rapid prototyping and evaluation of in-vehicle interfaces. In Proc. of CHI '05, 581--589. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sanders, M. S., & McCormick, E. J. (1987). Human Factors in Engineering and Design (6th ed.). New York, New York: McGraw-Hill.Google ScholarGoogle Scholar
  27. Teo, John, & Blackmon. (2012). CogTool-Explorer: A model of goal-directed user exploration that considers information layout. In Proc. of CHI '12, 2479--2488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Vera, A. H., John, B. E., Remington, R., Matessa, M., & Freed, M. A. (2005). Automating human-performance modeling at the millisecond level. Human-Computer Interaction, 20, 225'265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Williams, L. G. (1966). A Study Of Visual Search Using Eye Movement Recordings. Technical Report, Honeywell Inc., St. Paul Minnesota, Feb. 28, 1966. NTIS AD0629624.Google ScholarGoogle Scholar
  30. Williams, L. G. (1967). The effects of target Specification on objects 'xated during visual search. Acta Psychologica, 27, 355--360.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Towards accurate and practical predictive models of active-vision-based visual search

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2014
      4206 pages
      ISBN:9781450324731
      DOI:10.1145/2556288

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 April 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '14 Paper Acceptance Rate465of2,043submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader