skip to main content
research-article

MultiFab: a machine vision assisted platform for multi-material 3D printing

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We have developed a multi-material 3D printing platform that is high-resolution, low-cost, and extensible. The key part of our platform is an integrated machine vision system. This system allows for self-calibration of printheads, 3D scanning, and a closed-feedback loop to enable print corrections. The integration of machine vision with 3D printing simplifies the overall platform design and enables new applications such as 3D printing over auxiliary parts. Furthermore, our platform dramatically expands the range of parts that can be 3D printed by simultaneously supporting up to 10 different materials that can interact optically and mechanically. The platform achieves a resolution of at least 40 μm by utilizing piezoelectric inkjet printheads adapted for 3D printing. The hardware is low cost (less than $7,000) since it is built exclusively from off-the-shelf components. The architecture is extensible and modular -- adding, removing, and exchanging printing modules can be done quickly. We provide a detailed analysis of the system's performance. We also demonstrate a variety of fabricated multi-material objects.

Skip Supplemental Material Section

Supplemental Material

a129.mp4

mp4

22.6 MB

References

  1. 3D Systems. Projet 5500X http://www.3dsystems.com/3d-printers/professional/projet-5500x.Google ScholarGoogle Scholar
  2. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (July), 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Boykov, Y., and Kolmogorov, V. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 9 (Sept.), 1124--1137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Burg, T., Cass, C. A. P., Groff, R., Pepper, M., and Burg, K. J. L. 2010. Building off-the-shelf tissue-engineered composites. Phil. Trans. R. Soc. A 368, 1839âĂŞ--1862.Google ScholarGoogle ScholarCross RefCross Ref
  5. Campbell, T. A., and Ivanova, O. S. 2013. 3D printing of multifunctional nanocomposites. Nano Today 8, 2, 119--120.Google ScholarGoogle ScholarCross RefCross Ref
  6. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. 32, 4, 135:1--135:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cho, W., Sachs, E. M., Patrikalakis, N. M., and Troxel, D. E. 2003. A dithering algorithm for local composition control with three-dimensional printing. Computer-aided design 35, 9, 851--867.Google ScholarGoogle Scholar
  8. Choi, J.-W., Kim, H.-C., and Wicker, R. 2011. Multi-material stereolithography. Journal of Materials Processing Technology 211, 3, 318--328.Google ScholarGoogle ScholarCross RefCross Ref
  9. Dimas, L. S., Bratzel, G. H., Eylon, I., and Buehler, M. J. 2013. Tough composites inspired by mineralized natural materials: Computation, 3D printing, and testing. Advanced Functional Materials 23, 36, 4629--4638.Google ScholarGoogle ScholarCross RefCross Ref
  10. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4, 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dubois, A., Grieve, K., Moneron, G., Lecaque, R., Vabre, L., and Boccara, C. 2004. Ultrahigh-resolution full-field optical coherence tomography. Appl. Opt. 43, 14 (May), 2874--2883.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fab@Home. http://www.fabathome.org/.Google ScholarGoogle Scholar
  13. Fujifilm Dimatix. Dimatix materials printer dmp-2831.Google ScholarGoogle Scholar
  14. GelSight. Gelsight benchtop scanner. http://http://www.gelsight.com/products/.Google ScholarGoogle Scholar
  15. Han, L.-H., Suri, S., and Schmidt, C. E. 2010. Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed Microdevices 12, 721--725.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 4, 61:1--61:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hiller, J. D., and Lipson, H. 2012. Automatic design and manufacture of soft robots. IEEE Transactions on Robotics 28, 2, 457--466. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Inamdar, A., Magana, M., Medina, F., Grajeda, Y., and Wicker, R. 2006. Development of an automated multiple material stereolithography machine. In Proceedings of 17th Annual Solid Freeform Fabrication Symposium, Austin, TX, 624âĂŞ--635.Google ScholarGoogle Scholar
  19. Khalil, S., Nam, J., and Sun, W. 2005. Multi-nozzle deposition for construction of 3d biopolymer tissue scaffolds. Rapid Prototyping Journal 11, 1, 9--17.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kumar, P., Santosa, J. K., Beck, E., and Das, S. 2004. Direct-write deposition of fine powders through miniature hopper-nozzles for multi-material solid freeform fabrication. Rapid Prototyping Journal 10, 1, 14--23.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kwan, J. Design of Electronics for a High-resolution, Multi-Material, and Modular 3D Printer. Master's thesis, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  22. Lan, J. Design and Fabrication of a Modular Multi-Material 3D Printer. Master's thesis, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  23. L. E. Weiss, R. Merz, F. P. G. N. P. P. L. S. K. R. 1997. Shape deposition manufacturing of heterogeneous structures. Journal of Manufacturing Systems 16, 4.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lipton, J., Cohen, D., Heinz, M., Lobovsky, M., Parad, W., Bernstien, G., Li, T., Quartiere, J., Washington, K., Umaru, A., Masanoff, R., Granstein, J., Whitney, J., and Lipson, H. 2009. Fab@Home Model 2: Towards Ubiquitous Personal Fabrication Devices. In Solid Freeform Fabrication Symposium (SFF'09), 70--81.Google ScholarGoogle Scholar
  25. Makerbot. Replicator 2X http://www.makerbot.com/.Google ScholarGoogle Scholar
  26. Maruo, S., Ikuta, K., and Ninagawa, T. 2001. Multi-polymer microstereolithography for hybrid opto-MEMS. In The 14th IEEE International Conference on Micro Electro Mechanical Systems, 151--154.Google ScholarGoogle Scholar
  27. Oxman, N. 2011. Variable property rapid prototyping. Journal of Virtual and Physical Prototyping (VPP) 6, 1, 3--31.Google ScholarGoogle ScholarCross RefCross Ref
  28. Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum (Proc. Eurographics) 30, 2 (Apr.).Google ScholarGoogle ScholarCross RefCross Ref
  29. Ramos, J. MultiFab: A Multi-material 3D Printing Platform. Master's thesis, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  30. Sachs, E., Cima, M., and Cornie, J. 1990. Three-dimensional printing: Rapid tooling and prototypes directly from a cad model. CIRP Annals-Manufacturing Technology 39, 1, 201--204.Google ScholarGoogle ScholarCross RefCross Ref
  31. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stratasys. Objet500 Connex Multi-Material 3D Printer http://www.stratasys.com/3D-Printers/design-series/precision/objet-connex500.Google ScholarGoogle Scholar
  33. Szeliski, R. 2004. Image alignment and stitching: A tutorial. 89.Google ScholarGoogle Scholar
  34. Tompkin, J., Heinzle, S., Kautz, J., and Matusik, W. 2013. Content-adaptive lenticular prints. ACM Trans. Graph. 32, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Vidimč E, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wang, L., Lau, J., Thomas, E. L., and Boyce, M. C. 2011. Co-continuous composite materials for stiffness, strength, and energy dissipation. Advanced Materials 23, 13, 1524--1529.Google ScholarGoogle ScholarCross RefCross Ref
  37. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3d: tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 4, 95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Willis, K. D. D., Brockmeyer, E., Hudson, S. E., and Poupyrev, I. 2012. Printed optics: 3D printing of embedded optical elements for interactive devices. In UIST. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhao, S., Hasan, M., Ramamoorthi, R., and Bala, K. 2013. Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures. ACM Trans. Graph. 32, 4, 131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zhou, C., Chen, Y., Yang, Z., and Khoshnevis, B. 2013. Digital material fabrication using mask-image-projectionbased stereolithography. Rapid Prototyping Journal 19, 3, 153--165.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. MultiFab: a machine vision assisted platform for multi-material 3D printing

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader