skip to main content
10.1145/2807591.2807596acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article
Public Access

Improving the scalability of the ocean barotropic solver in the community earth system model

Published:15 November 2015Publication History

ABSTRACT

High-resolution climate simulations are increasingly in demand and require tremendous computing resources. In the Community Earth SystemModel (CESM), the Parallel Ocean Model (POP) is computationally expensive for high-resolution grids (e.g., 0.1°) and is frequently the least scalable component of CESM for certain production simulations. In particular, the modified Preconditioned Conjugate Gradient (PCG), used to solve the elliptic system of equations in the barotropic mode, scales poorly at the high core counts, which is problematic for high-resolution simulations. In this work, we demonstrate that the communication costs in the barotropic solver occupy an increasing portion of the total POP execution time as core counts are increased. To mitigate this problem, we implement a preconditioned Chebyshev-type iterative method in POP (called P-CSI), which requires far fewer global reductions than PCG. We also develop an effective block preconditioner based on the Error Vector Propagation Method to attain a competitive convergence rate for P-CSI. We demonstrate that the improved scalability of P-CSI results in a 5.2x speedup of the barotropic mode in high-resolution POP on 16,875 cores, which yields a 1.7x speedup of the overall POP simulation. Further, we ensure that the new solver produces an ocean climate consistent with the original one via an ensemble-based statistical method.

References

  1. P. Adamidis, V. Heuveline, and F. Wilhelm. A high-efficient scalable solver for the global ocean/sea-ice model MPIOM. KIT, 2011.Google ScholarGoogle Scholar
  2. A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka, S. A. Mickelson, J. Edwards, M. Vertenstein, and A. Wegener. A methodology for evaluating the impact of data compression on climate simulation data. In Proceedings of the 23rd international symposium on High-performance parallel and distributed computing, pages 203--214. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Beare and D. Stevens. Optimisation of a parallel ocean general circulation model. In Annales Geophysicae, volume 15, pages 1369--1377. Springer, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  4. M. Benzi. Preconditioning techniques for large linear systems: a survey. Journal of Computational Physics, 182(2):418--477, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Bergamaschi, G. Gambolati, and G. Pini. A numerical experimental study of inverse preconditioning for the parallel iterative solution to 3d finite element flow equations. Journal of Computational and Applied Mathematics, 210(1):64--70, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. F. O. Bryan, R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean. Frontal scale air-sea interaction in high-resolution coupled climate models. Journal of Climate, 23(23):6277--6291, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. T. Chronopoulos and C. W. Gear. S-step iterative methods for symmetric linear systems. J. Comput. Appl. Math., 25(2):153--168, Feb. 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. P. Concus, G. Golub, and G. Meurant. Block preconditioning for the conjugate gradient method. SIAM Journal on Scientific and Statistical Computing, 6(1):220--252, 1985.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. E. D'Azevedo, V. Eijkhout, and C. Romine. Conjugate gradient algorithms with reduced synchronization overhead on distributed memory multiprocessors. 1999.Google ScholarGoogle Scholar
  10. J. Dennis. Inverse space-filling curve partitioning of a global ocean model. In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1--10. IEEE, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. Dennis, M. Vertenstein, P. Worley, A. Mirin, A. Craig, R. Jacob, and S. Mickelson. Computational performance of ultra-high-resolution capability in the community earth system model. International Journal of High Performance Computing Applications, 26(1):5--16, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. M. Dennis and H. M. Tufo. Scaling climate simulation applications on the IBM Blue Gene/L system. IBM Journal of Research and Development, 52(1.2):117--126, jan. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. E. Dietrich, M. Marietta, and P. J. Roache. An ocean modelling system with turbulent boundary layers and topography: Numerical description. International journal for numerical methods in fluids, 7(8):833--855, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  14. K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing application sensitivity to OS interference using kernel-level noise injection. In Proceedings of SC Conference, pages 1--12. SC Conference, 2008. doi:10.1145/1413370.1413390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. R. Fulton, P. E. Ciesielski, and W. H. Schubert. Multigrid methods for elliptic problems: A review. Monthly Weather Review, 114(5):943--959, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  16. P. Ghysels and W. Vanroose. Hiding global synchronization latency in the preconditioned conjugate gradient algorithm. Parallel Computing, 40(7):224--238, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. Graham. The importance of eddy permitting model resolution for simulation of the heat budget of tropical instability waves. Ocean Modelling, 79:21--32, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. Gutknecht and S. Röllin. The Chebyshev iteration revisited. Parallel Computing, 28(2):263--283, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Hoemmen. Communication-avoiding Krylov subpace methods. PhD thesis, University of California, Berkeley, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Y. Hu, X. Huang, X. Wang, H. Fu, S. Xu, H. Ruan, W. Xue, and G. Yang. A scalable barotropic mode solver for the parallel ocean program. In Euro-Par 2013 Parallel Processing, pages 739--750. Springer, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. W. Jones, P. Worley, Y. Yoshida, and J. B. White III. Practical performance portability in the parallel ocean program (POP). Concurrency and Computation: Practice and Experience, 17:1317--1327, August 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Kanarska, A. Shchepetkin, and J. McWilliams. Algorithm for non-hydrostatic dynamics in the regional oceanic modeling system. Ocean Modelling, 18(3):143--174, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  23. R. Loft, A. Andersen, F. Bryan, J. M. Dennis, T. Engel, P. Gillman, D. Hart, I. Elahi, S. Ghosh, R. Kelly, A. Kamrath, G. Pfister, M. Rempel, J. Small, W. Skamarock, M. Wiltberger, B. Shader, P. Chen, and B. Cash. Yellowstone: A dedicated resource for earth system science. In J. S. Vetter, editor, Contemporary High Performance Computing: From Petascale Toward Exascale, Volume Two, volume 2 of CRC Computational Science Series, page 262. Chapman and Hall/CRC, Boca Raton, 1 edition, 2015.Google ScholarGoogle Scholar
  24. Y. Matsumura and H. Hasumi. A non-hydrostatic ocean model with a scalable multigrid poisson solver. Ocean Modelling, 24(1):15--28, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. L. McClean, D. C. Bader, F. O. Bryan, M. E. Maltrud, J. M. Dennis, A. A. Mirin, P. W. Jones, Y. Y. Kim, D. P. Ivanova, M. Vertenstein, et al. A prototype two-decade fully-coupled fine-resolution CCSM simulation. Ocean Modelling, 39(1):10--30, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  26. P. D. Meyer, A. J. Valocchi, S. F. Ashby, and P. E. Saylor. A numerical investigation of the conjugate gradient method as applied to three-dimensional groundwater flow problems in randomly heterogeneous porous media. Water Resources Research, 25(6):1440--1446, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  27. E. H. Müller and R. Scheichl. Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction. Quarterly Journal of the Royal Meteorological Society, 140(685):2608--2624, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  28. C. Paige. Accuracy and effectiveness of the lanczos algorithm for the symmetric eigenproblem. Linear Algebra and its Applications, 34(0):235--258, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  29. G. Pini and G. Gambolati. Is a simple diagonal scaling the best preconditioner for conjugate gradients on supercomputers? Advances in Water Resources, 13(3):147--153, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  30. R. S. Reddy and M. M. Kumar. Comparison of conjugate gradient methods and strongly implicit procedure for groundwater flow simulation. Journal of the Indian Institute of Science, 75(6):667, 2013.Google ScholarGoogle Scholar
  31. P. J. Roache. Elliptic marching methods and domain decomposition, volume 5. CRC press, 1995.Google ScholarGoogle Scholar
  32. J. Sheng, D. G. Wright, R. J. Greatbatch, and D. E. Dietrich. Candie: A new version of the diecast ocean circulation model. Journal of Atmospheric and Oceanic Technology, 15(6):1414--1432, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  33. R. Smith, J. Dukowicz, and R. Malone. Parallel ocean general circulation modeling. Physica D: Nonlinear Phenomena, 60(1):38--61, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. Smith, P. Jones, B. Briegleb, F. Bryan, G. Danabasoglu, J. Dennis, J. Dukowicz, C. E. B. Fox-Kemper, P. Gent, M. Hecht, et al. The parallel ocean program (POP) reference manual ocean component of the community climate system model (CCSM). 2010.Google ScholarGoogle Scholar
  35. T. Stocker, D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, B. Bex, and B. Midgley. IPCC, 2013: Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. 2013.Google ScholarGoogle Scholar
  36. K. Stüben. A review of algebraic multigrid. Journal of Computational and Applied Mathematics, 128(1):281--309, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Y.-h. Tseng and M.-h. Chien. Parallel domain-decomposed Taiwan multi-scale community ocean model (pd-timcom). Computers & Fluids, 45(1):77--83, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  38. Y.-h. Tseng and J. H. Ferziger. A ghost-cell immersed boundary method for flow in complex geometry. Journal of computational physics, 192(2):593--623, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. D. Wang, A. Bhatele, and D. Ghosal. Performance variability due to job placement on edison. Poster presented at SC14, Nov 16--21, New Orleans.Google ScholarGoogle Scholar
  40. J. A. White and R. I. Borja. Block-preconditioned newton--krylov solvers for fully coupled flow and geomechanics. Computational Geosciences, 15(4):647--659, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  41. P. H. Worley, A. A. Mirin, A. P. Craig, M. A. Taylor, J. M. Dennis, and M. Vertenstein. Performance of the community earth system model. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC '11, pages 54:1--54:11, New York, NY, USA, 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yellowstone workload study, v4.1. https://www2.cisl.ucar.edu/NWSC-2, September 2014.Google ScholarGoogle Scholar

Index Terms

  1. Improving the scalability of the ocean barotropic solver in the community earth system model

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SC '15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
          November 2015
          985 pages
          ISBN:9781450337236
          DOI:10.1145/2807591
          • General Chair:
          • Jackie Kern,
          • Program Chair:
          • Jeffrey S. Vetter

          Copyright © 2015 ACM

          © 2015 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the United States Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 November 2015

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          SC '15 Paper Acceptance Rate79of358submissions,22%Overall Acceptance Rate1,516of6,373submissions,24%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader