skip to main content
research-article

Structure and appearance optimization for controllable shape design

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

The field of topology optimization seeks to optimize shapes under structural objectives, such as achieving the most rigid shape using a given quantity of material. Besides optimal shape design, these methods are increasingly popular as design tools, since they automatically produce structures having desirable physical properties, a task hard to perform by hand even for skilled designers. However, there is no simple way to control the appearance of the generated objects.

In this paper, we propose to optimize shapes for both their structural properties and their appearance, the latter being controlled by a user-provided pattern example. These two objectives are challenging to combine, as optimal structural properties fully define the shape, leaving no degrees of freedom for appearance. We propose a new formulation where appearance is optimized as an objective while structural properties serve as constraints. This produces shapes with sufficient rigidity while allowing enough freedom for the appearance of the final structure to resemble the input exemplar.

Our approach generates rigid shapes using a specified quantity of material while observing optional constraints such as voids, fills, attachment points, and external forces. The appearance is defined by examples, making our technique accessible to casual users. We demonstrate its use in the context of fabrication using a laser cutter to manufacture real objects from optimized shapes.

References

  1. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B., and Sigmund, O. 2011. Efficient topology optimization in Matlab using 88 lines of code. Struct. Multidiscip. Optim. 43, 1, 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. 2009. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28, 3, 24:1--24:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bendsøe, M. P., and Kikuchi, N. 1988. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 71, 2, 197--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bendsøe, M. P., and Sigmund, O. 2003. Topology Optimization: Theory, Methods and Applications.Google ScholarGoogle Scholar
  5. Bendsøe, M. P. 1989. Optimal shape design as a material distribution problem. Structural Optimization 1, 192--202.Google ScholarGoogle ScholarCross RefCross Ref
  6. Brackett, D., Ashcroft, I., and Hague, R. 2011. Topology optimization for additive manufacturing. In Proc. of the 24th Solid Freeform Fabrication Symposium, 6--8.Google ScholarGoogle Scholar
  7. Bruyneel, M., and Duysinx, P. 2005. Note on topology optimization of continuum structures including self-weight. Struct. Multidiscip. Optim. 29, 4, 245--256.Google ScholarGoogle ScholarCross RefCross Ref
  8. Busto, P. P., Eisenacher, C., Lefebvre, S., and Stamminger, M. 2010. Instant texture synthesis by numbers. In Proc. of the VMV Workshop, 81--85.Google ScholarGoogle Scholar
  9. Christiansen, A. N., Bærentzen, J. A., Nobel-Jørgensen, M., Aage, N., and Sigmund, O. 2015. Combined shape and topology optimization of 3D structures. Computers & Graphics 46, 25--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Deaton, J., and Grandhi, R. 2014. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1, 1--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dumas, J., Lu, A., Lefebvre, S., Wu, J., and Dick, C. 2015. By-Example Synthesis of Structurally Sound Patterns. ACM Trans. Graph. 34, 4, 137:1--137:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Duysinx, P., and Bendsøe, M. P. 1998. Topology optimization of continuum structures with local stress constraints. Int. J. Numer. Methods. Eng. 43, 8, 1453--1478.Google ScholarGoogle ScholarCross RefCross Ref
  13. Efros, A. A., and Leung, T. K. 1999. Texture synthesis by non-parametric sampling. In Proceedings of the International Conference on Computer Vision, 1033--1038. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Han, Z., Liu, Z., Han, J., and Bu, S. 2015. 3D shape creation by style transfer. Vis. Comput. 31, 9, 1147--1161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. H. 2001. Image analogies. In Proc. of SIGGRAPH 2001, 327--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Holmberg, E., Torstenfelt, B., and Klarbring, A. 2013. Stress constrained topology optimization. Struct. Multidiscip. Optim. 48, 1, 33--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Johnson, S. G., 2007. The NLopt nonlinear-optimization package.Google ScholarGoogle Scholar
  18. Kaspar, A., Neubert, B., Lischinski, D., Pauly, M., and Kopf, J. 2015. Self tuning texture optimization. Computer Graphics Forum 34, 2, 349--359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., and Wong, T.-T. 2007. Solid texture synthesis from 2D exemplars. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kosaka, I., and Swan, C. C. 1999. A symmetry reduction method for continuum structural topology optimization. Computers & Structures 70, 1, 47--61.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kwatra, V., Essa, I., Bobick, A., and Kwatra, N. 2005. Texture optimization for example-based synthesis. ACM Trans. Graph. 24, 3, 795--802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lee, E., James, K. A., and Martins, J. R. 2012. Stress-constrained topology optimization with design-dependent loading. Struct. Multidiscip. Optim. 46, 5, 647--661. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Li, H., Zhang, H., Wang, Y., Cao, J., Shamir, A., and Cohen-Or, D. 2013. Curve style analysis in a set of shapes. Computer Graphics Forum 32, 6, 77--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., and Chen, B. 2014. Build-to-last: Strength to weight 3D printed objects. ACM Trans. Graph. 33, 4, 97:1--97:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ma, C., Huang, H., Sheffer, A., Kalogerakis, E., and Wang, R. 2014. Analogy-driven 3D style transfer. Computer Graphics Forum 33, 2, 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Panetta, J., Zhou, Q., Malomo, L., Pietroni, N., Cignoni, P., and Zorin, D. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34, 4, 135:1--135:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. París, J., Muínos, I., Navarrina, F., Colominas, I., and Casteleiro, M. 2005. A minimum weight FEM formulation for structural topological optimization with local stress constraints. In VI World Congress on Structural and Multidisciplinary Optimization.Google ScholarGoogle Scholar
  28. Paulino, G. H., and Gain, A. L. 2015. Bridging art and engineering using Escher-based virtual elements. Struct. Multidiscip. Optim. 51, 4, 867--883. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pedersen, N. 2000. Maximization of eigenvalues using topology optimization. Struct. Mult. Optim. 20, 1, 2--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., and Gross, M. 2015. Microstructures to control elasticity in 3D printing. ACM Trans. Graph. 34, 4, 136:1--136:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sigmund, O., and Maute, K. 2013. Topology optimization approaches: A comparative review. Struct. Multidiscip. Optim. 48, 6, 1031--1055.Google ScholarGoogle ScholarCross RefCross Ref
  32. Sigmund, O. 1997. On the design of compliant mechanisms using topology optimization. Mechanics of Structures and Machines 25, 4, 493--524.Google ScholarGoogle ScholarCross RefCross Ref
  33. Sigmund, O. 2001. A 99 line topology optimization code written in Matlab. Struct. Mult. Optim. 21, 2, 120--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sigmund, O. 2009. Manufacturing tolerant topology optimization. Acta Mechanica Sinica 25, 2, 227--239.Google ScholarGoogle ScholarCross RefCross Ref
  35. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4, 48:1--48:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Svanberg, K. 1987. The method of moving asymptotes---a new method for structural optimization. Int. J. Numer. Methods. Eng. 24, 2, 359--373.Google ScholarGoogle ScholarCross RefCross Ref
  37. Svanberg, K. 1995. A globally convergent version of MMA without linesearch. In Proc. of the first world congress of structural and multidisciplinary optimization, 9--16.Google ScholarGoogle Scholar
  38. Umetani, N., and Schmidt, R. 2013. Cross-sectional structural analysis for 3D printing optimization. In SIGGRAPH Asia 2013 Technical Briefs, 5:1--5:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. 32, 6, 177:1--177:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wei, L.-Y., and Levoy, M. 2000. Fast texture synthesis using tree-structured vector quantization. In Proc. of SIGGRAPH 2000, 479--488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. 2009. State of the art in example-based texture synthesis. In Eurographics 2009, State of the Art Report.Google ScholarGoogle Scholar
  42. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z. 2010. Style-content separation by anisotropic part scales. ACM Trans. Graph. 29, 6, 184:1--184:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3D shape galleries. ACM Trans. Graph. 31, 4, 57:1--57:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4, 137:1--137:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zhou, S., Jiang, C., and Lefebvre, S. 2014. Topology-constrained synthesis of vector patterns. ACM Trans. Graph. 33, 6, 215:1--215:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zhou, M., Lazarov, B. S., Wang, F., and Sigmund, O. 2015. Minimum length scale in topology optimization by geometric constraints. Computer Methods in Applied Mechanics and Engineering 293, 266--282.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Structure and appearance optimization for controllable shape design

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 34, Issue 6
              November 2015
              944 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/2816795
              Issue’s Table of Contents

              Copyright © 2015 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 2 November 2015
              Published in tog Volume 34, Issue 6

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader