skip to main content
10.1145/2964284.2964305acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article
Public Access

High-speed Depth Stream Generation from a Hybrid Camera

Authors Info & Claims
Published:01 October 2016Publication History

ABSTRACT

High-speed video has been commonly adopted in consumer-grade cameras, augmenting these videos with a corresponding depth stream will enable new multimedia applications, such as 3D slow-motion video. In this paper, we present a hybrid camera system that combines a high-speed color camera with a depth sensor, e.g. Kinect depth sensor, to generate a depth stream that can produce both high-speed and high-resolution RGB+depth stream. Simply interpolating the low-speed depth frames is not satisfactory, where interpolation artifacts and lose in surface details are often visible. We have developed a novel framework that utilizes both shading constraints within each frame and optical flow constraints between neighboring frames. More specifically we present (a) an effective method to find the intrinsics images to allow more accurate normal estimation; and (b) an optimization-based framework to estimate the high-resolution/high-speed depth stream, taking into consideration temporal smoothness and shading/depth consistency. We evaluated our holistic framework with both synthetic and real sequences, it showed superior performance than previous state-of-the-art.

References

  1. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI, 34(11):2274--2282, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. O. M. Aodha, N. D. Campbell, A. Nair, and G. J. Brostow. Patch based synthesis for single depth image super-resolution. In ECCV, pages 71--84, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. T. Barron and J. Malik. High-frequency shape and albedo from shading using natural image statistics. In CVPR, pages 2521--2528, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. T. Barron and J. Malik. Shape, illumination, and reflectance from shading. IEEE TPAMI, 37(8):1670--1687, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. T. Barron and J. Malik. Intrinsic scene properties from a single rgb-d image. IEEE TPAMI, 38(4):690--703, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. G. Barrow and J. M. Tenenbaum. Recovering intrinsic scene characteristics from images. Comput. Vis. Syst., 1978.Google ScholarGoogle Scholar
  7. S. Bi, X. Han, and Y. Yu. An l1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition. ACM Trans. Graph., 34(4):78, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. N. Bonneel, K. Sunkavalli, J. Tompkin, D. Sun, S. Paris, and H. Pfister. Interactive intrinsic video editing. ACM Trans. Graph., 33(6):197, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Bousseau, S. Paris, and F. Durand. User-assisted intrinsic images. ACM Trans. Graph., 28(5):130, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. IEEE TPAMI, 33(3):500--513, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Q. Chen and V. Koltun. A simple model for intrinsic image decomposition with depth cues. In ICCV, pages 241--248, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Durou, M. Falcone, and M. Sagona. Numerical methods for shape-from-shading: A new survey with benchmarks. CVIU, 109(1):22--43, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and H. Bischof. Image guided depth upsampling using anisotropic total generalized variation. In ICCV, pages 993--1000, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. Garces, A. Munoz, J. Lopez-Moreno, and D. D. Gutierrez. Intrinsic images by clustering. In Computer Graphics Forum, volume 31, pages 1415--1424, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. Han, J. Lee, and I. Kweon. High quality shape from a single rgb-d image under uncalibrated natural illumination. In ICCV, pages 1617--1624, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. M. Haque, A. Chatterjee, and V. M. Govindu. High quality photometric reconstruction using a depth camera. In CVPR, pages 2283--2290, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Herbst, X. Ren, and D. Fox. Rgb-d flow: Dense 3-d motion estimation using color and depth. In ICRA, pages 2276--2282, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  18. B. K. P. Horn. Shape from Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View. PhD thesis, MIT, 1970.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Jeon, S. Cho, X. Tong, and S. Lee. Intrinsic image decomposition using structure-texture separation and surface normals. In ECCV, pages 218--233, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  20. N. Kong, P. Gehler, and M. Black. Intrinsic video. In ECCV, pages 360--375. 2014.Google ScholarGoogle ScholarCross RefCross Ref
  21. P. Laffont, A. Bousseau, S. Paris, F. Durand, and G. Drettakis. Coherent intrinsic images from photo collections. ACM Trans. Graph., 31(6), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. E. H. Land and J. J. McCann. Lightness and retinex theory. JOSA, 1971.Google ScholarGoogle ScholarCross RefCross Ref
  23. K. J. Lee, Q. Zhao, X. Tong, M. Gong, S. Izadi, S. U. Lee, P. Tan, and S. Lin. Estimation of intrinsic image sequences from imageGoogle ScholarGoogle Scholar
  24. depth video. In ECCV, pages 327--340. 2012.Google ScholarGoogle Scholar
  25. R. Or-El, G. Rosman, A. Wetzler, R. Kimmel, and A. M. Bruckstein. Rgbd-fusion: Real-time high precision depth recovery. In CVPR, pages 5407--5416, 2015.Google ScholarGoogle Scholar
  26. J. Park, H. Kim, Y. Tai, M. S. Brown, and I. Kweon. High quality depth map upsampling for 3d-tof cameras. In ICCV, pages 1623--1630, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Ramamoorthi and P. Hanrahan. An efficient representation for irradiance environment maps. In ACM SIGGRAPH, pages 497--500, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. C. Richardt, C. Stoll, N. A. Dodgson, H. Seidel, and C. Theobalt. Coherent spatiotemporal filtering, upsampling and rendering of rgbz videos. In Computer Graphics Forum, volume 31, pages 247--256, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Shi, Y. Dong, X. Tong, and Y. Chen. Efficient intrinsic image decomposition for rgbd images. In ACM VRST, pages 17--25, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Tai, H. Du, M. S. Brown, and L. Stephen. Correction of spatially varying image and video motion blur using a hybrid camera. IEEE TPAMI, 32(6):1012--1028, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. F. Tappen, W. T. Freeman, and E. H. Adelson. Recovering intrinsic images from a single image. IEEE TPAMI, 27(9):1459--1472, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Wu, K. Varanasi, Y. Liu, H. Seidel, and C. Theobalt. Shading-based dynamic shape refinement from multi-view video under general illumination. In ICCV, pages 1108--1115, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C. Wu, M. Zollhöfer, M. Nießner, M. Stamminger, S. Izadi, and C. Theobalt. Real-time shading-based refinement for consumer depth cameras. ACM Trans. Graph., 33(3), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth super resolution for range images. In CVPR, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  35. G. Ye, E. Garces, Y. Liu, Q. Dai, and D. Gutierrez. Intrinsic video and applications. ACM Trans. Graph., 33(4):80, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. L. Yu, S. Yeung, Y. Tai, and S. Lin. Shading-based shape refinement of rgb-d images. In CVPR, pages 1415--1422, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Q. Zhang, M. Ye, R. Yang, Y. Matsushita, B. Wilburn, and H. Yu. Edge-preserving photometric stereo via depth fusion. In CVPR, pages 2472--2479, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Q. Zhao, P. Tan, Q. Dai, L. Shen, E. Wu, and S. Lin. A closed-form solution to retinex with nonlocal texture constraints. IEEE TPAMI, 34(7):1437--1444, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Zhu, L. Wang, R. Yang, J. Davis, and Z. Pan. Reliability fusion of time-of-flight depth and stereo geometry for high quality depth maps. IEEE TPAMI, 33(7):1400--1414, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. High-speed Depth Stream Generation from a Hybrid Camera

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        MM '16: Proceedings of the 24th ACM international conference on Multimedia
        October 2016
        1542 pages
        ISBN:9781450336031
        DOI:10.1145/2964284

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 October 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        MM '16 Paper Acceptance Rate52of237submissions,22%Overall Acceptance Rate995of4,171submissions,24%

        Upcoming Conference

        MM '24
        MM '24: The 32nd ACM International Conference on Multimedia
        October 28 - November 1, 2024
        Melbourne , VIC , Australia

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader