skip to main content
10.1145/2984511.2984517acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Holoportation: Virtual 3D Teleportation in Real-time

Authors Info & Claims
Published:16 October 2016Publication History

ABSTRACT

We present an end-to-end system for augmented and virtual reality telepresence, called Holoportation. Our system demonstrates high-quality, real-time 3D reconstructions of an entire space, including people, furniture and objects, using a set of new depth cameras. These 3D models can also be transmitted in real-time to remote users. This allows users wearing virtual or augmented reality displays to see, hear and interact with remote participants in 3D, almost as if they were present in the same physical space. From an audio-visual perspective, communicating and interacting with remote users edges closer to face-to-face communication. This paper describes the Holoportation technical system in full, its key interactive capabilities, the application scenarios it enables, and an initial qualitative study of using this new communication medium.

Skip Supplemental Material Section

Supplemental Material

p741-orts-escolano.mp4

mp4

378.6 MB

References

  1. 1. Balogh, T., and Kovács, P. T. Real-time 3d light field transmission. In SPIE Photonics Europe, International Society for Optics and Photonics (2010), 772406--772406.Google ScholarGoogle Scholar
  2. 2. Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM SIGGRAPH and Transaction On Graphics (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. 3. Batlle, J., Mouaddib, E., and Salvi, J. Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pattern recognition 31, 7 (1998), 963--982. Google ScholarGoogle ScholarCross RefCross Ref
  4. 4. Beck, S., Kunert, A., Kulik, A., and Froehlich, B. Immersive group-to-group telepresence. Visualization and Computer Graphics, IEEE Transactions on 19, 4 (2013), 616--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. 5. Benko, H., Jota, R., and Wilson, A. Miragetable: freehand interaction on a projected augmented reality tabletop. In Proceedings of the SIGCHI conference on human factors in computing systems, ACM (2012), 199--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. 6. Besl, P. J. Active, optical range imaging sensors. Machine vision and applications 1, 2 (1988), 127--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. 7. Blanche, P.-A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.-Y., Kathaperumal, M., et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 7320 (2010), 80--83. Google ScholarGoogle ScholarCross RefCross Ref
  8. 8. Bleyer, M., Rhemann, C., and Rother, C. PatchMatch Stereo - Stereo Matching with Slanted Support Windows. In BMVC (2011).Google ScholarGoogle Scholar
  9. 9. Bogo, F., Black, M. J., Loper, M., and Romero, J. Detailed full-body reconstructions of moving people from monocular rgb-d sequences. In Proceedings of the IEEE International Conference on Computer Vision (2015), 2300--2308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. 10. Chen, W.-C., Towles, H., Nyland, L., Welch, G., and Fuchs, H. Toward a compelling sensation of telepresence: Demonstrating a portal to a distant (static) office. In Proceedings of the conference on Visualization'00, IEEE Computer Society Press (2000), 327--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. 11. Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D., Calabrese, D., Hoppe, H., Kirk, A., and Sullivan, S. High-quality streamable free-viewpoint video. ACM TOG 34, 4 (2015), 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. 12. de Queiroz, R., and Chou, P. A. Compression of 3d point clouds using a region-adaptive hierarchical transform. Transactions on Image Processing (2016). To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. 13. de Queiroz, R., and Chou, P. A. Motion-compensated compression of dynamic voxelized point clouds. Transactions on Image Processing (2016). Submitted.Google ScholarGoogle Scholar
  14. 14. Dou, M., and Fuchs, H. Temporally enhanced 3d capture of room-sized dynamic scenes with commodity depth cameras. In Virtual Reality (VR), 2014 iEEE, IEEE (2014), 39--44. Google ScholarGoogle ScholarCross RefCross Ref
  15. 15. Dou, M., Khamis, S., Degtyarev, Y., Davidson, P., Fanello, S. R., Kowdle, A., Escolano, S. O., Rhemann, C., Kim, D., Taylor, J., Kohli, P., Tankovich, V., and Izadi, S. Fusion4d: Real-time performance capture of challenging scenes. ACM Trans. Graph. 35, 4 (July 2016), 114:1--114:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. 16. Fanello, S., Rhemann, C., Tankovich, V., Kowdle, A., Orts Escolano, S., Kim, D., and Izadi, S. Hyperdepth: Learning depth from structured light without matching. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016). Google ScholarGoogle ScholarCross RefCross Ref
  17. 17. Fuchs, H., Bazin, J.-C., et al. Immersive 3d telepresence. Computer, 7 (2014), 46--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. 18. Fuchs, H., Bishop, G., Arthur, K., McMillan, L., Bajcsy, R., Lee, S., Farid, H., and Kanade, T. Virtual space teleconferencing using a sea of cameras. In Proc. First International Conference on Medical Robotics and Computer Assisted Surgery, vol. 26 (1994).Google ScholarGoogle Scholar
  19. 19. Gal, R., Wexler, Y., Ofek, E., Hoppe, H., and Cohen-Or, D. Seamless montage for texturing models. In Computer Graphics Forum, vol. 29, Wiley Online Library (2010), 479--486. Google ScholarGoogle ScholarCross RefCross Ref
  20. 20. Gibbs, S. J., Arapis, C., and Breiteneder, C. J. Teleport-towards immersive copresence. Multimedia Systems 7, 3 (1999), 214--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. 21. Gilkey, R. H., and Anderson, T. R., Eds. Binaural and Spatial Hearing in Real and Virtual Environments. Psychology Press, 2009.Google ScholarGoogle Scholar
  22. 22. Gross, M., Würmlin, S., Naef, M., Lamboray, E., Spagno, C., Kunz, A., Koller-Meier, E., Svoboda, T., Van Gool, L., Lang, S., et al. blue-c: a spatially immersive display and 3d video portal for telepresence. In ACM Transactions on Graphics (TOG), vol. 22, ACM (2003), 819--827. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. 23. Hansard, M., Lee, S., Choi, O., and Horaud, R. P. Time-of-flight cameras: principles, methods and applications. Springer Science & Business Media, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. 24. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R. A., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A. J., and Fitzgibbon, A. W. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, October 16--19, 2011 (2011), 559--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. 25. Jones, A., Lang, M., Fyffe, G., Yu, X., Busch, J., McDowall, I., Bolas, M., and Debevec, P. Achieving eye contact in a one-to-many 3d video teleconferencing system. ACM Transactions on Graphics (TOG) 28, 3 (2009), 64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. 26. Jones, B., Sodhi, R., Murdock, M., Mehra, R., Benko, H., Wilson, A., Ofek, E., MacIntyre, B., Raghuvanshi, N., and Shapira, L. Roomalive: Magical experiences enabled by scalable, adaptive projector-camera units. In Proceedings of the 27th annual ACM symposium on User interface software and technology, ACM (2014), 637--644. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. 27. Jouppi, N. P. First steps towards mutually-immersive mobile telepresence. In Proceedings of the 2002 ACM conference on Computer supported cooperative work, ACM (2002), 354--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. 28. Kanade, T., Rander, P., and Narayanan, P. Virtualized reality: Constructing virtual worlds from real scenes. IEEE multimedia, 1 (1997), 34--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. 29. Kauff, P., and Schreer, O. An immersive 3d video-conferencing system using shared virtual team user environments. In Proceedings of the 4th international conference on Collaborative virtual environments, ACM (2002), 105--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. 30. Kim, K., Bolton, J., Girouard, A., Cooperstock, J., and Vertegaal, R. Telehuman: effects of 3d perspective on gaze and pose estimation with a life-size cylindrical telepresence pod. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM (2012), 2531--2540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. 31. Kohli, P., Rihan, J., Bray, M., and Torr, P. H. S. Simultaneous segmentation and pose estimation of humans using dynamic graph cuts. IJCV 79, 3 (2008), 285--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. 32. Krähenbühl, P., and Koltun, V. Efficient inference in fully connected crfs with gaussian edge potentials. In Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held 12--14 December 2011, Granada, Spain. (2011), 109--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. 33. Kurillo, G., Bajcsy, R., Nahrsted, K., and Kreylos, O. Immersive 3d environment for remote collaboration and training of physical activities. In Virtual Reality Conference, 2008. VR'08. IEEE, IEEE (2008), 269--270.Google ScholarGoogle ScholarCross RefCross Ref
  34. 34. Kuster, C., Ranieri, N., Agustina, Zimmer, H., Bazin, J. C., Sun, C., Popa, T., and Gross, M. Towards next generation 3d teleconferencing systems. 1--4.Google ScholarGoogle Scholar
  35. 35. Kuster, C., Ranieri, N., Zimmer, H., Bazin, J., Sun, C., Popa, T., Gross, M., et al. Towards next generation 3d teleconferencing systems. In 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), 2012, IEEE (2012), 1--4.Google ScholarGoogle Scholar
  36. 36. Lee, K., Chu, D., Cuervo, E., Kopf, J., Degtyarev, Y., Grizan, S., Wolman, A., and Flinn, J. Outatime: Using speculation to enable low-latency continuous interaction for mobile cloud gaming. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, ACM (2015), 151--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. 37. Lepetit, V., Moreno-Noguer, F., and Fua, P. Epnp: An accurate o(n) solution to the pnp problem. Int. J. Comput. Vision 81, 2 (Feb. 2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. 38. Loop, C., Zhang, C., and Zhang, Z. Real-time high-resolution sparse voxelization with application to image-based modeling. In Proceedings of the 5th High-Performance Graphics Conference, ACM (2013), 73--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. 39. Luff, P., and Heath, C. Mobility in collaboration. In Proceedings of the 1998 ACM conference on Computer supported cooperative work, ACM (1998), 305--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. 40. Maimone, A., and Fuchs, H. Encumbrance-free telepresence system with real-time 3d capture and display using commodity depth cameras. In Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International Symposium on, IEEE (2011), 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. 41. Maimone, A., and Fuchs, H. Real-time volumetric 3d capture of room-sized scenes for telepresence. In 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), 2012, IEEE (2012), 1--4.Google ScholarGoogle Scholar
  42. 42. Maimone, A., Yang, X., Dierk, N., State, A., Dou, M., and Fuchs, H. General-purpose telepresence with head-worn optical see-through displays and projector-based lighting. In Virtual Reality (VR), 2013 IEEE, IEEE (2013), 23--26. Google ScholarGoogle ScholarCross RefCross Ref
  43. 43. Mark, W. R., McMillan, L., and Bishop, G. Post-rendering 3d warping. In Proceedings of the 1997 symposium on Interactive 3D graphics, ACM (1997), 7--ff. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. 44. Matusik, W., and Pfister, H. 3d tv: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. In ACM Transactions on Graphics (TOG), vol. 23, ACM (2004), 814--824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. 45. Microsoft. Xaudio2 API Programming Reference. https://msdn.microsoft.com/enus/library/windows/desktop/mt186596(v=vs.85).aspx.Google ScholarGoogle Scholar
  46. 46. Molyneaux, D., Izadi, S., Kim, D., Hilliges, O., Hodges, S., Cao, X., Butler, A., and Gellersen, H. Interactive environment-aware handheld projectors for pervasive computing spaces. In Pervasive Computing. Springer, 2012, 197--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. 47. Mori, M., MacDorman, K. F., and Kageki, N. The uncanny valley {from the field}. Robotics & Automation Magazine, IEEE 19, 2 (2012), 98--100. Google ScholarGoogle ScholarCross RefCross Ref
  48. 48. Nagano, K., Jones, A., Liu, J., Busch, J., Yu, X., Bolas, M., and Debevec, P. An autostereoscopic projector array optimized for 3d facial display. In ACM SIGGRAPH 2013 Emerging Technologies, ACM (2013), 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. 49. Narayan, K. S., and Abbeel, P. Optimized color models for high-quality 3d scanning. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, IEEE (2015), 2503--2510.Google ScholarGoogle ScholarCross RefCross Ref
  50. 50. Pejsa, T., Kantor, J., Benko, H., Ofek, E., and Wilson, A. D. Room2room: Enabling life-size telepresence in a projected augmented reality environment. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, CSCW 2016, San Francisco, CA, USA, February 27 - March 2, 2016, D. Gergle, M. R. Morris, P. Bjrn, and J. A. Konstan, Eds., ACM (2016), 1714--1723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. 51. Petit, B., Lesage, J.-D., Menier, C., Allard, J., Franco, J.-S., Raffin, B., Boyer, E., and Faure, F. Multicamera real-time 3d modeling for telepresence and remote collaboration. International Journal of Digital Multimedia Broadcasting 2010 (2009).Google ScholarGoogle Scholar
  52. 52. Posdamer, J., and Altschuler, M. Surface measurement by space-encoded projected beam systems. Computer graphics and image processing 18, 1 (1982), 1--17. Google ScholarGoogle ScholarCross RefCross Ref
  53. 53. Pradeep, V., Rhemann, C., Izadi, S., Zach, C., Bleyer, M., and Bathiche, S. Monofusion: Real-time 3d reconstruction of small scenes with a single web camera. In ISMAR (2013).Google ScholarGoogle Scholar
  54. 54. Ren, S., Cao, X., Wei, Y., and Sun, J. Face alignment at 3000 fps via regressing local binary features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014), 1685--1692. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. 55. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and Gelautz, M. Fast cost-volume filtering for visual correspondence and beyond. In CVPR (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. 56. S. Kosov, T. T., and Seidel, H.-P. Accurate real-time disparity estimation with variational methods. In ISVC (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. 57. Scharstein, D., and Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47, 1--3 (Apr. 2002), 7--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. 58. Sumner, R. W., Schmid, J., and Pauly, M. Embedded deformation for shape manipulation. ACM TOG 26, 3 (2007), 80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. 59. Tanikawa, T., Suzuki, Y., Hirota, K., and Hirose, M. Real world video avatar: real-time and real-size transmission and presentation of human figure. In Proceedings of the 2005 international conference on Augmented tele-existence, ACM (2005), 112--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. 60. Tombari, F., Mattoccia, S., Stefano, L. D., and Addimanda, E. Near real-time stereo based on effective cost aggregation. In ICPR (2008). Google ScholarGoogle ScholarCross RefCross Ref
  61. 61. Towles, H., Chen, W.-C., Yang, R., Kum, S.-U., Kelshikar, H. F. N., Mulligan, J., Daniilidis, K., Fuchs, H., Hill, C. C., Mulligan, N. K. J., et al. 3d tele-collaboration over internet2. In In: International Workshop on Immersive Telepresence, Juan Les Pins, Citeseer (2002).Google ScholarGoogle Scholar
  62. 62. Vineet, V., Warrell, J., and Torr, P. H. S. Filter-based mean-field inference for random fields with higher-order terms and product label-spaces. In ECCV 2012 - 12th European Conference on Computer Vision, vol. 7576 of Lecture Notes in Computer Science, Springer (2012), 31--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. 63. Will, P. M., and Pennington, K. S. Grid coding: A preprocessing technique for robot and machine vision. Artificial Intelligence 2, 3 (1972), 319--329.Google ScholarGoogle Scholar
  64. 64. Williams, O., Barham, P., Isard, M., Wong, T., Woo, K., Klein, G., Service, D., Michail, A., Pearson, A., Shetter, M., et al. Late stage reprojection, Jan. 29 2015. US Patent App. 13/951,351.Google ScholarGoogle Scholar
  65. 65. Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., and Nistr, D. Real-time global stereo matching using hierarchical belief propagation. In BMVC (2006). Google ScholarGoogle ScholarCross RefCross Ref
  66. 66. Zhang, C., Cai, Q., Chou, P. A., Zhang, Z., and Martin-Brualla, R. Viewport: A distributed, immersive teleconferencing system with infrared dot pattern. IEEE Multimedia 20, 1 (2013), 17--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. 67. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 11 (Nov. 2000), 1330--1334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. 68. Zhou, Q.-Y., and Koltun, V. Color map optimization for 3d reconstruction with consumer depth cameras. ACM Transactions on Graphics (TOG) 33, 4 (2014), 155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. 69. Zollhöfer, M., Nießner, M., Izadi, S., Rhemann, C., Zach, C., Fisher, M., Wu, C., Fitzgibbon, A., Loop, C., Theobalt, C., and Stamminger, M. Real-time non-rigid reconstruction using an rgb-d camera. ACM Transactions on Graphics (TOG) 33, 4 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. 70. Zuckerman, M., DePaulo, B. M., and Rosenthal, R. Verbal and nonverbal communication of deception. Advances in experimental social psychology 14, 1 (1981), 59. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Holoportation: Virtual 3D Teleportation in Real-time

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          UIST '16: Proceedings of the 29th Annual Symposium on User Interface Software and Technology
          October 2016
          908 pages
          ISBN:9781450341899
          DOI:10.1145/2984511

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 16 October 2016

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          UIST '16 Paper Acceptance Rate79of384submissions,21%Overall Acceptance Rate842of3,967submissions,21%

          Upcoming Conference

          UIST '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader