skip to main content
survey
Public Access

A Survey on Systems Security Metrics

Published:20 December 2016Publication History
Skip Abstract Section

Abstract

Security metrics have received significant attention. However, they have not been systematically explored based on the understanding of attack-defense interactions, which are affected by various factors, including the degree of system vulnerabilities, the power of system defense mechanisms, attack (or threat) severity, and situations a system at risk faces. This survey particularly focuses on how a system security state can evolve as an outcome of cyber attack-defense interactions. This survey concerns how to measure system-level security by proposing a security metrics framework based on the following four sub-metrics: (1) metrics of system vulnerabilities, (2) metrics of defense power, (3) metrics of attack or threat severity, and (4) metrics of situations. To investigate the relationships among these four sub-metrics, we propose a hierarchical ontology with four sub-ontologies corresponding to the four sub-metrics and discuss how they are related to each other. Using the four sub-metrics, we discuss the state-of-art existing security metrics and their advantages and disadvantages (or limitations) to obtain lessons and insight in order to achieve an ideal goal in developing security metrics. Finally, we discuss open research questions in the security metrics research domain and we suggest key factors to enhance security metrics from a system security perspective.

Skip Supplemental Material Section

Supplemental Material

References

  1. M. Ahmed, E. Al-Shaer, and L. Khan. 2008. A novel quantitative approach for measuring network security. In IEEE INFOCOM’2008.Google ScholarGoogle Scholar
  2. E. Al-Shaer, L. Khan, and M. Ahmed. 2008. A comprehensive objective network security metric framework for proactive security configuration. In Proc. CSIIRW’08. 42:1--42:3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Albanese, S. Jajodia, and S. Noel. 2012. Time-efficient and cost-effective network hardening using attack graphs. In Proc. IEEE DSN’12. 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Albert and A. Barabasi. 2002. Statistical mechanics of complex networks. Rev. Mod. Phys. 74 (2002), 47--97.Google ScholarGoogle ScholarCross RefCross Ref
  5. P. Ammann, D. Wijesekera, and S. Kaushik. 2002. Scalable, graph-based network vulnerability analysis. In Proc. ACM CCS’02. 217--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Axelsson. 2009. The base-rate fallacy and its implications for the difficulty of intrusion detection. In Proc. ACM CCS’09. 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Backes and S. Nürnberger. 2014. Oxymoron: Making fine-grained memory randomization practical by allowing code sharing. In Proc. USENIX Security Symposium. 433--447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Berinato. 2002. Finally, a Real Return on Security Spending. Retrieved from http://www.cio.com/article/2440999/metrics/finally--a-real-return-on-security-spending.html. (2002).Google ScholarGoogle Scholar
  9. B. Biggio, G. Fumera, and F. Roli. 2014. Security evaluation of patternclassifiers under attack. IEEE Trans. Knowl. Data Eng. 26, 4 (2014), 984--996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Bilge and T. Dumitras. 2012. Before we knew it: An empirical study of zero-day attacks in the real world. In Proc. ACM CCS’12. 833--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. Boggs, S. Du, and S. Stolfo. 2014. Measuring drive-by download defense in depth. In Proc. RAID’14. 172--191.Google ScholarGoogle Scholar
  12. N. Boggs and S. Stolfo. 2011. ALDR: A new metric for measuring effective layering of defenses. In Proc. Layered Assurance Workshop (LAW’11) (2011).Google ScholarGoogle Scholar
  13. R. Böhme and F. Freiling. 2008. Dependability Metrics: Advanced Lectures, 7--13.Google ScholarGoogle Scholar
  14. R. Böhme and T. Nowey. 2008. Dependability metrics. Chapter Economic Security Metrics, 176--187.Google ScholarGoogle Scholar
  15. J. Bonneau. 2012a. The science of guessing: Analyzing an anonymized corpus of 70 million passwords. In Proc. IEEE Symposium on Security and Privacy. 538--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Bonneau. 2012b. Statistical metrics for individual password strength. In Proc. International Conference on Security Protocols. 76--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. N. Burow, S. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and M. Franz. 2016. Control-flow integrity: Precision, security, and performance. CoRR abs/1602.04056 (2016).Google ScholarGoogle Scholar
  18. W. Burr, D. Dodson, and W. Polk. 2006. Electronic Authentication Guideline. NIST Publication 800-63 Version 1.0.2. Retrieved from http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf.Google ScholarGoogle Scholar
  19. A. Cardenas, J. Baras, and K. Seamon. 2006. A framework for the evaluation of intrusion detection systems. In Proc. IEEE 2006 Symposium on Security and Privacy. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. L. Carin, G. Cybenko, and J. Hughes. 2008. Cybersecurity strategies: The QuERIES methodology. IEEE Comput. 41, 8 (2008), 20--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. Gross. 2015. Control-flow bending: On the effectiveness of control-flow integrity. In 24th USENIX Security Symposium. 161--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. Carlini and D. Wagner. 2014. ROP is still dangerous: Breaking modern defenses. In Proc. USENIX Security Symposium. 385--399. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. X. De Carné De Carnavalet and M. Mannan. 2015. A large-scale evaluation of high-impact password strength meters. ACM TISSEC 18, 1 (May 2015), 1:1--1:32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Castelluccia, M. Dürmuth, and D. Perito. 2012. Adaptive password-strength meters from markov models. In Proc. NDSS’12.Google ScholarGoogle Scholar
  25. V. Chandola, A. Banerjee, and V. Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv. 41, 3 (2009), 15:1--15:58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Z. Chen and C. Ji. 2007. Measuring network-aware worm spreading ability. In Proc. INFOCOM’2007. 116--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Cheng, L. Wang, S. Jajodia, and A. Singhal. 2012. Aggregating CVSS base scores for semantics-rich network security metrics. In Proc. IEEE SRDS’12. 31--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Cheng, J. Deng, J. Li, S. DeLoach, A. Singhal, and X. Ou. 2014. Metrics of security. In Cyber Defense and Situational Awareness. Vol. 62.Google ScholarGoogle Scholar
  29. E. Chew, M. Swanson, K. Stine, N. Bartol, A. Brown, and W. Robinson. 2008. NIST Special Publication 800-55 Revision 1: Performance Measurement Guide for Information Security.Google ScholarGoogle Scholar
  30. J. Cho, H. Cam, and A. Oltramari. 2016. Effect of personality traits on trust and risk to phishing vulnerability: Modeling and analysis. In Proc. IEEE CogSIMA’16.Google ScholarGoogle Scholar
  31. CIS. 2010. The CIS Security Metrics (ver 1.1.0). Retrieved from http://benchmarks.cisecurity.org/downloads/metrics/. (2010).Google ScholarGoogle Scholar
  32. INFOSEC Research Council. 2007. Hard Problem List. Retrieved from http://www.infosec-research.org/ docs_public/20051130-IRC-HPL-FINAL.pdf. (2007).Google ScholarGoogle Scholar
  33. G. Da, M. Xu, and S. Xu. 2014. A new approach to modeling and analyzing security of networked systems. In Proc. HotSoS’14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Dacier, Y. Deswarte, and M. Kaâniche. 1996. Models and tools for quantitative assessment of operational security. In Proc. IFIP Security Conference. 177--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. D. Dagon, G. Gu, C. Lee, and W. Lee. 2007. A taxonomy of botnet structures. In Proc. ACSAC’07. 325--339.Google ScholarGoogle Scholar
  36. D. Dagon, C. Zou, and W. Lee. 2006. Modeling botnet propagation using time zones. In Proc. NDSS’06.Google ScholarGoogle Scholar
  37. N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. 2004. Adversarial classification. In Proc. KDD’04. 99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. L. Davi, A. Sadeghi, D. Lehmann, and F. Monrose. 2014. Stitching the gadgets: On the ineffectiveness of coarse-grained control-flow integrity protection. In Proc. USENIX Security Symposium. 401--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. DellAmico, P. Michiardi, and Y. Roudier. 2010. Password strength: An empirical analysis. In Proc. INFOCOM’10. 983--991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Y. Desmedt and Y. Frankel. 1989. Threshold cryptosystems. In Proc. Crypto. 307--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Z. Durumeric, J. Kasten, D. Adrian, J. Halderman, M. Bailey, F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson. 2014. The matter of heartbleed. In Proc. ACM IMC’14. 475--488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. B. Edwards, S. Hofmeyr, and S. Forrest. 2015. Hype and heavy tails: A closer look at data breaches. In Proc WEIS’15. 67--78.Google ScholarGoogle Scholar
  43. T. Eskridge, M. Carvalho, E. Stoner, T. Toggweiler, and A. Granados. 2015. VINE: A cyber emulation environment for MTD experimentation. In Proc. ACM MTD’15. 43--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. FIRST. 2015. Forum of Incident Response and Security Teams: Common Vulnerability Scoring System (CVSS) Version 3.0. Retrieved from https://www.first.org/cvss. (2015).Google ScholarGoogle Scholar
  45. S. Frei and T. Kristensen. Feb. 2010. The Security Exposure of SOoftware Portfolios. Retrieved from https://secunia.com/gfx/pdf/Secunia_RSA_Software_Portfolio_Security_Exposure.pdf. (Feb. 2010).Google ScholarGoogle Scholar
  46. M. Frigault and L. Wang. 2008. Measuring network security using bayesian network-based attack graphs. In Proc. IEEE CompSAC’08. 698--703. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. M. Frigault, L. Wang, A. Singhal, and S. Jajodia. 2008. Measuring network security using dynamic bayesian network. In Proc. QoP’08. 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. J. Gaffney Jr and J. Ulvila. 2001. Evaluation of intrusion detectors: A decision theory approach. In Proc. IEEE Symposium on Security and Privacy. 50--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. 2014. Out of control: Overcoming control-flow integrity. In Proc. IEEE Security and Privacy. 575--589. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. L. Gordon and M. Loeb. 2006. Budgeting process for information security expenditures. Commun. ACM 49, 1 (Jan. 2006), 121--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. G. Gu, A. Cárdenas, and W. Lee. 2008. Principled reasoning and practical applications of alert fusion in intrusion detection systems. In Proc. ACM ASIACCS’08. 136--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skorić. 2006. Measuring intrusion detection capability: An information-theoretic approach. In Proc. AsiaCCS’06. 90--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Y. Han, W. Lu, and S. Xu. 2014. Characterizing the power of moving target defense via cyber epidemic dynamics. In Proc. HotSoS’14. 10:1--10:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. S. Hardy, M. Crete-Nishihata, K. Kleemola, A. Senft, B. Sonne, G. Wiseman, P. Gill, and R. Deibert. 2014. Targeted threat index: Characterizing and quantifying politically-motivated targeted malware. In Proc. USENIX Security Symposium. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. W. Herlands, T. Hobson, and P. Donovan. 2014. Effective entropy: Security-centric metric for memory randomization techniques. In Workshop on Cyber Security Experimentation and Test. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. H. Holm. 2014. A large-scale study of the time required to compromise a computer system. IEEE TDSC 11, 1 (2014), 2--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S. Rajagopalan, and A. Singhal. 2013. Aggregating vulnerability metrics in enterprise networks using attack graphs. J. Comput. Secur. 21, 4 (2013), 561--597. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. A. Howe, I. Ray, M. Roberts, M. Urbanska, and Z. Byrne. 2012. The psychology of security for the home computer user. In IEEE Symp. on Security and Privacy. 209--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. L. Huang, A. Joseph, B. Nelson, B. Rubinstein, and J. Tygar. 2011. Adversarial machine learning. In Proc. ACM AISec’11. 43--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. N. Idika and B. Bhargava. 2012. Extending attack graph-based security metrics and aggregating their application. IEEE TDSC 9, 1 (Jan. 2012), 75--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. W. Jansen. 2009. Directions in Security Metrics Research. Retrieved from http://csrc.nist.gov/publications/ nistir/ir7564/nistir-7564_metrics-research.pdf. (2009).Google ScholarGoogle Scholar
  62. A. Jaquith. 2007. Security Metrics: Replacing Fear, Uncertainty, and Doubt. Addison-Wesley Professional. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. S. Jha, O. Sheyner, and J. Wing. 2002. Two formal analys s of attack graphs. In Proc. IEEE CSF. 49--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. B. Johnson, J. Chuang, J. Grossklags, and N. Christin. 2012. Metrics for measuring ISP badness: The case of spam. In Proc. FC’12. 89--97.Google ScholarGoogle Scholar
  65. E. Jonsson and T. Olovsson. 1997. A quantitative model of the security intrusion process based on attacker behavior. IEEE Trans. SE 23, 4 (1997), 235--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. P. Kelley, S. Komanduri, M. Mazurek, and R. Shay. 2012. Guess again (and again and again): Measuring password strength by simulating password-cracking algorithms. In Proc. IEEE Symposium on Security and Privacy. 523--537. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. M. Konte, R. Perdisci, and N. Feamster. 2015. ASwatch: An as reputation system to expose bulletproof hosting ases. In Proc. ACM SIGCOMM’15. 625--638. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. M. Kührer, C. Rossow, and T. Holz. 2014. Paint it black: Evaluating the effectiveness of malware blacklists. In Proc. RAID’14. 1--21.Google ScholarGoogle Scholar
  69. B. Lampson. 2006. Practical Principles for Computer Security. (2006).Google ScholarGoogle Scholar
  70. C. Landwehr, A. Bull, J. McDermott, and W. Choi. 1994. A taxonomy of computer program security flaws. ACM Comput. Surv. 26, 3 (1994), 211--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. 2014. SoK: Automated software diversity. In Proc. 2014 IEEE Symposium on Security and Privacy. 276--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. W. Lee, W. Fan, M. Miller, S. Stolfo, and E. Zadok. 2002. Toward cost-sensitive modeling for intrusion detection and response. J. Comput. Secur. 10, 1--2 (July 2002), 5--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. E. LeMay, M. Ford, K. Keefe, W. Sanders, and C. Muehrcke. 2011. Model-based security metrics using adversary view security evaluation (ADVISE). In Proc. QEST’11. 191--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. L. Levesque, N. Fanny, J. Fernandez, S. Chiasson, and A. Somayaji. 2013. A clinical study of risk factors related to malware infections. In Proc. ACM CCS’13. 97--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. D. Levin. 2003. Lessons learned in using live red teams in IA experiments. In Proc. DISCEX-III. 110--119.Google ScholarGoogle ScholarCross RefCross Ref
  76. X. Li, P. Parker, and S. Xu. 2011. A stochastic model for quantitative security analysis of networked systems. IEEE TDSC 8, 1 (2011), 28--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. R. Lippmann, J. Riordan, T. Yu, and K. Watson. 2012. Continuous Security Metrics for Prevalent Network Threats: Introduction and First Four Metrics. Technical Report IA-3. MIT Lincoln Laboratory. Retrieved from https://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2012_05_22_Lippmann_TechReport_FP.pdf.Google ScholarGoogle Scholar
  78. Y. Liu and H. Man. 2005. Network vulnerability assessment using Bayesian networks. In Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005, B. V. Dasarathy (Ed.), Vol. 5812. 61--71.Google ScholarGoogle Scholar
  79. Y. Liu, A. Sarabi, J. Zhang, P. Naghizadeh, M. Karir, M. Bailey, and M. Liu. 2015. Cloudy with a chance of breach: Forecasting cyber security incidents. In USENIX Security Symposium. 1009--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. D. Lowd and C. Meek. 2005. Adversarial learning. In KDD’05. 641--647. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. K. Lu, C. Song, B. Lee, S. Chung, T. Kim, and W. Lee. 2015. ASLR-guard: Stopping address space leakage for code reuse attacks. In Proc. ACM CCS’15. 280--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. W. Lu, S. Xu, and X. Yi. 2013. Optimizing active cyber defense dynamics. In Proc. GameSec’13. 206--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. B. Madan, K. Gogeva-Popstojanova, K. Vaidyanathan, and K. Trivedi. 2002. Modeling and quantification of security attributes of software systems. In Proc. DSN’02. 505--514. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. P. Manadhata and J. Wing. 2011. An attack surface metric. IEEE Trans. Software Eng. 37, 3 (2011), 371--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. W. Marczak, J. Scott-Railton, M. Marquis-Boire, and V. Paxson. 2014. When governments hack opponents: A look at actors and technology. In Proc. USENIX Security Symposium. 511--525. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. J. McHugh. 2006. Quality of protection: Measuring the unmeasurable? In Proc QoP’06. 1--2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. G. Mezzour, K. Carley, and L. Carley. 2015. An empirical study of global malware encounters. In Proc. HotSoS’15. 8:1--8:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Microsoft. 2013-2014. Security Intelligence Report. Retrieved from http://www.microsoft.com/security/sir/ default.aspx. (2013-2014).Google ScholarGoogle Scholar
  89. A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. Payne. 2015. Evaluating computer intrusion detection systems: A survey of common practices. ACM Comput. Surv. 48, 1 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. MITRE. 2014. Common Weakness Scoring System (CWSS version 1.0.1). Retrieved from https://cwe.mitre. org/cwss/cwss_v1.0.1.html. (2014).Google ScholarGoogle Scholar
  91. A. Mohaisen and O. Alrawi. 2014. Av-meter: An evaluation of antivirus scans and labels. In Proc. DIMVA’2014. 112--131.Google ScholarGoogle Scholar
  92. J. Morales, S. Xu, and R. Sandhu. 2012. Analyzing malware detection eciency with multiple anti-malware programs. ASE Sci. J. 1, 2 (2012), 56--66.Google ScholarGoogle Scholar
  93. A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dimitras. 2015. The attack of the clones: A study of the impact of shared code on vulnerability patching. In Proc. IEEE Symposium on Security and Privacy. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. K. Nayak, D. Marino, P. Efstathopoulos, and T. Dumitras. 2014. Some vulnerabilities are different than others. In Proc. RAID’14. 426--446.Google ScholarGoogle Scholar
  95. A. Neupane, M. Rahman, N. Saxena, and L. Hirshfield. 2015. A multi-modal neuro-physiological study of phishing detection and malware warnings. In Proc. ACM CCS’15. 479--491. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. D. Nicol, B. Sanders, J. Katz, B. Scherlis, T. Dumitra, L. Williams, and M. Singh. 2015. The Science of Security 5 Hard Problems. Retrieved from http://cps-vo.org/node/21590. (2015).Google ScholarGoogle Scholar
  97. D. Nicol, W. Sanders, and K. Trivedi. 2004. Model-based evaluation: From dependability to security. IEEE TDSC 1, 1 (2004), 48--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. B. Niu and G. Tan. 2015. Per-input control-flow integrity. In Proc. CCS’15. 914--926. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. S. Noel and S. Jajodia. 2014. Metrics suite for network attack graph analytics. In Proc. CISR’14. 5--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. R. Ortalo, Y. Deswarte, and M. Kaâniche. 1999. Experimenting with quantitative evaluation tools for monitoring operational security. IEEE Trans. Softw. Eng. 25, 5 (Sept. 1999), 633--650. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. X. Ou and A. Singhal. 2011. Quantitative Security Risk Assessment of Enterprise Networks. Springer.Google ScholarGoogle Scholar
  102. J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. 2006. A weakest-adversary security metric for network configuration security analysis. In Proc. ACM QoP’06. 31--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. S. Pfleeger and R. Cunningham. 2010. Why measuring security is hard. IEEE Secur. Priv. 8, 4 (July 2010), 46--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. S. Pfleeger. 2009. Useful Cybersecurity Metrics. IT Profess. 11, 3 (2009), 38--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. C. Phillips and L. Swiler. 1998. A graph-based system for network-vulnerability analysis. In Proc. NSPW’98. 71--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. A. Prakash and M. Wellman. 2015. Empirical game-theoretic analysis for moving target defense. In Proc. ACM MTD’15. 57--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. M. Rajab, F. Monrose, and A. Terzis. 2005. On the effectiveness of distributed worm monitoring. In Proc. USENIX Security Symposium. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. M. Reiter and S. Stubblebine. 1999. Authentication metric analysis and design. ACM TISSEC 2, 2 (May 1999), 138--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. R. Ritchey and P. Ammann. 2000. Using model checking to analyze network vulnerabilities. In Proc. IEEE Symposium on Security and Privacy. 156--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. F. Roberts. 1979. Measurement Theory, with Applications to Decision Making, Utility and the Social Sciences. Addison-Wesley, Boston.Google ScholarGoogle Scholar
  111. K. Roundy and B. Miller. 2013. Binary-code obfuscations in prevalent packer tools. ACM Comput. Surv. 46, 1 (July 2013), 4:1--4:32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. C. Sabottke, O. Suciu, and T. Dumitras. 2015. Vulnerability disclosure in the age of social media: Exploiting twitter for predicting real-world exploits. In Proc. USENIX Security Symposium. 1041--1056. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. W. Sanders. 2014. Quantitative security metrics: Unattainable holy grail or a vital breakthrough within our reach? IEEE Secur. Priv. 12, 2 (2014), 67--69.Google ScholarGoogle ScholarCross RefCross Ref
  114. B. Schneier. 2000. Secrets 8 Lies: Digital Security in a Networked World. John Wiley 8 Sons, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. National Science and Technology Council. 2011. Trustworthy Cyberspace: Strategic Plan for the Federal Cybersecurity Research and Development Program. Retrieved from https://www.nitrd.gov/SUBCOMMITTEE/csia/Fed_Cybersecurity_RD_Strategic_Plan_2011.pdf. (2011).Google ScholarGoogle Scholar
  116. H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh. 2004. On the effectiveness of address-space randomization. In Proc. ACM CCS’04. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. S. Sheng, M. Holbrook, P. Kumaraguru, L. Cranor, and J. Downs. 2010. Who falls for phish? A demographic analysis of phishing susceptibility and effectiveness of interventions. In Proc. CHI’10. 373--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. 2002. Automated generation and analysis of attack graphs. In IEEE Symp. on Security and Privacy. 273--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. A. Singhal and X. Ou. 2011. Security Risk Analysis of Enterprise Networks Using Probabilistic Attack Graphs. National Institute of Standards and Technology. Retrieved from http://csrc.nist.gov/publications/nistir/ir7788/NISTIR-7788.pdf.Google ScholarGoogle Scholar
  120. K. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. Sadeghi. 2013. Just-in-time code reuse: On the effectiveness of fine-grained address space layout randomization. In Proc. IEEE Symposium on Security and Privacy. 574--588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. N. Stakhanova, C. Strasburg, S. Basu, and J. Wong. 2012. Towards cost-sensitive assessment of intrusion response selection. J. Comput. Secur. 20, 2--3 (2012), 169--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. S. Stevens. 1946. On the theory of scales of measurement. (1946).Google ScholarGoogle Scholar
  123. S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan. 2000. Cost-based modeling for fraud and intrusion detection: Results from the JAM project. In Proc. DISCEX’00. 130--144.Google ScholarGoogle Scholar
  124. B. Stone-Gross, C. Kruegel, K. Almeroth, A. Moser, and E. Kirda. 2009. FIRE: FInding rogue networks. In Proc. ACSAC’09. 231--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. C. Strasburg, N. Stakhanova, S. Basu, and J. Wong. 2009. A framework for cost sensitive assessment of intrusion response selection. In Proc. COMPSAC’09. 355--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte: Thwarting memory disclosure attacks using destructive code reads. In Proc. ACM CCS’15. 256--267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. M. Tavallaee, N. Stakhanova, and A. Ghorbani. 2010. Toward credible evaluation of anomaly-based intrusion-detection methods. IEEE Trans. Syst, Man Cybernet. C 40, 5 (2010), 516--524. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. U. Thakore. 2015. A quantitative methodology for evaluating and deploying security monitors. Retrieved from https://www.ideals.illinois.edu/handle/2142/88103. (2015).Google ScholarGoogle Scholar
  129. X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. Bringas. 2015. SoK: Deep packer inspection: A longitudinal study of the complexity of run-time packers. In 2015 IEEE Symposium on Security and Privacy. 659--673. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. B. Ur, P. Kelley, S. Komanduri, J. Lee, M. Maass, M. Mazurek, T. Passaro, R. Shay, T. Vidas, L. Bauer, N. Christin, and L. Cranor. 2012. How does your password measure up? The effect of strength meters on password creation. In Proc. USENIX Security Symposium. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. B. Ur, S. Segreti, L. Bauer, N. Christin, L. Cranor, S. Komanduri, D. Kurilova, M. Mazurek, William Melicher, and Richard Shay. 2015. Measuring real-world accuracies and biases in modeling password guessability. In Proc. 24th USENIX Security Symposium. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. P. Velleman and L. Wilkinson. 1993. Nominal, ordinal, interval, and ratio typologies are misleading. Am. Stat. 47, 1 (1993), 65--72.Google ScholarGoogle Scholar
  133. V. Verendel. 2009. Quantified security is a weak hypothesis: A critical survey of results and assumptions. In Proc. NSPW’09. 37--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. C. Villarrubia, E. Fernandez-Medina, and M. Piattini. 2004. Towards a classification of security metrics. In Proc. ICEIS’04. 341--350.Google ScholarGoogle Scholar
  135. Nedim Šrndic and Pavel Laskov. 2014. Practical evasion of a learning-based classifier: A case study. In Proc. IEEE Symposium on Security and Privacy. 197--211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. I. Wagner and D. Eckhoff. 2015. Technical Privacy Metrics: A Systematic Survey. Technical Report 1512.00327. arXiv. Retrieved from http://arxiv.org/abs/1512.00327 arXiv: 1512.00327.Google ScholarGoogle Scholar
  137. L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. 2008. An attack graph-based probabilistic security metric. In Proc. IFIP Conf. on Data and App. Security. 283--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. L. Wang, S. Jajodia, A. Singhal, and S. Noel. 2010. k-zero day safety: Measuring the security risk of networks against unknown attacks. In Proc. ESORICS’10. 573--587. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. H. Wei, D. Frinke, O. Carter, and C. Ritter. 2001. Cost-benefit analysis for network intrusion detection systems. In Proceedings of the 28th Annual Computer Security Conference. Washington, D.C.Google ScholarGoogle Scholar
  140. M. Weir, S. Aggarwal, M. Collins, and H. Stern. 2010. Testing metrics for password creation policies by attacking large sets of revealed passwords. In Proc. ACM CCS’10. 162--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. L. Xu, Z. Zhan, S. Xu, and K. Ye. 2014b. An evasion and counter-evasion study in malicious websites detection. In Proc. IEEE CNS’14. 265--273.Google ScholarGoogle Scholar
  142. M. Xu, G. Da, and S. Xu. 2015a. Cyber epidemic models with dependences. Internet Math. 11, 1 (2015), 62--92.Google ScholarGoogle ScholarCross RefCross Ref
  143. M.Xu and S. Xu. 2012. An extended stochastic model for quantitative security analysis of networked systems. Internet Math. 8, 3 (2012), 288--320.Google ScholarGoogle ScholarCross RefCross Ref
  144. S. Xu. 2014a. Cybersecurity dynamics. In Proc. HotSoS’14. 14:1--14:2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. S. Xu. 2014b. Emergent behavior in cybersecurity. In Proc. HotSoS’14. 13:1--13:2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. S. Xu, W. Lu, and H. Li. 2015b. A stochastic model of active cyber defense dynamics. Internet Math. 11, 1 (2015), 23--61.Google ScholarGoogle ScholarCross RefCross Ref
  147. S. Xu, W. Lu, and L. Xu. 2012a. Push- and pull-based epidemic spreading in arbitrary networks: Thresholds and deeper insights. ACM TAAS 7, 3 (2012), 32:1--32:26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. S. Xu, W. Lu, L. Xu, and Z. Zhan. 2014a. Adaptive epidemic dynamics in networks: Thresholds and control. ACM TAAS 8, 4 (2014), 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. S. Xu, W. Lu, and Z. Zhan. 2012b. A stochastic model of multivirus dynamics. IEEE Trans. Depend. Secure Comput. 9, 1 (2012), 30--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. D. Yardon. May 4, 2014. Symantec Develops New Attack on Cyberhacking. Retrieved from http://www.wsj. com/articles/SB10001424052702303417104579542140235850578. (May 4, 2014).Google ScholarGoogle Scholar
  151. T. Yen, V. Heorhiadi, A. Oprea, M. Reiter, and A. Juels. 2014. An epidemiological study of malware encounters in a large enterprise. In Proc. ACM CCS’14. 1117--1130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. 2009. When private keys are public: Results from the 2008 debian OpenSSL vulnerability. In Proc. ACM IMC’09. 15--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. K. Zaffarano, J. Taylor, and S. Hamilton. 2015. A quantitative framework for moving target defense effectiveness evaluation. In Proc. ACM MTD’15. 3--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  154. Z. Zhan, M. Xu, and S. Xu. 2014. A characterization of cybersecurity posture from network telescope data. In Proc. InTrust’14. 105--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. J. Zhang, Z. Durumeric, M. Bailey, M. Liu, and M. Karir. 2014. On the mismanagement and maliciousness of networks. In Proc. NDSS’14.Google ScholarGoogle Scholar
  156. M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese. 2016. Network diversity: A security metric for evaluating the resilience of networks against zero-day attacks. IEEE T-IFS 11, 5 (May 2016), 1071--1086. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. S. Zhang, X. Zhang, and X. Ou. 2014. After we knew it: Empirical study and modeling of cost-effectiveness of exploiting prevalent known vulnerabilities across IaaS cloud. In Proc. ACM AsiaCCS. 317--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. R. Zheng, W. Lu, and S. Xu. 2015. Active cyber defense dynamics exhibiting rich phenomena. In Proc. HotSoS’15. 2:1--2:12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Survey on Systems Security Metrics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 49, Issue 4
          December 2017
          666 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3022634
          • Editor:
          • Sartaj Sahni
          Issue’s Table of Contents

          Copyright © 2016 ACM

          © 2016 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the United States Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 December 2016
          • Revised: 1 October 2016
          • Accepted: 1 October 2016
          • Received: 1 January 2016
          Published in csur Volume 49, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • survey
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader