skip to main content
10.1145/3018661.3018731acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article
Public Access

Motifs in Temporal Networks

Published:02 February 2017Publication History

ABSTRACT

Networks are a fundamental tool for modeling complex systems in a variety of domains including social and communication networks as well as biology and neuroscience. The counts of small subgraph patterns in networks, called network motifs, are crucial to understanding the structure and function of these systems. However, the role of network motifs for temporal networks, which contain many timestamped links between nodes, is not well understood.

Here we develop a notion of a temporal network motif as an elementary unit of temporal networks and provide a general methodology for counting such motifs. We define temporal network motifs as induced subgraphs on sequences of edges, design several fast algorithms for counting temporal network motifs, and prove their runtime complexity. We also show that our fast algorithms achieve 1.3x to 56.5x speedups compared to a baseline method.

We use our algorithms to count temporal network motifs in a variety of real-world datasets. Results show that networks from different domains have significantly different motif frequencies, whereas networks from the same domain tend to have similar motif frequencies. We also find that measuring motif counts at various time scales reveals different behavior.

References

  1. M. Araujo, S. Papadimitriou, S. Günnemann, C. Faloutsos, P. Basu, A. Swami, E. E. Papalexakis, and D. Koutra. Com2: fast automatic discovery of temporal ('comet') communities. In PAKDD, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  2. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509--512, 1999. Google ScholarGoogle ScholarCross RefCross Ref
  3. A. R. Benson, D. F. Gleich, and J. Leskovec. Tensor spectral clustering for partitioning higher-order network structures. In SDM, 2015. Google ScholarGoogle ScholarCross RefCross Ref
  4. A. R. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex networks. Science, 353(6295):163--166, 2016. Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis. Mining graph evolution rules. In ECML PKDD, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. M. Dunlavy, T. G. Kolda, and E. Acar. Temporal link prediction using matrix and tensor factorizations. TKDD, 5(2):10, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Gurukar, S. Ranu, and B. Ravindran. Commit: A scalable approach to mining communication motifs from dynamic networks. In SIGMOD, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. P. Holme and J. Saramäki. Temporal networks. Physics Reports, 519(3):97--125, 2012. Google ScholarGoogle ScholarCross RefCross Ref
  9. H. Huang, J. Tang, S. Wu, L. Liu, et al. Mining triadic closure patterns in social networks. In WWW, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Z. Jacobs, S. F. Way, J. Ugander, and A. Clauset. Assembling thefacebook: Using heterogeneity to understand online social network assembly. In Web Science, 2015.Google ScholarGoogle Scholar
  11. D. Kondor, M. Pósfai, I. Csabai, and G. Vattay. Do the rich get richer? an empirical analysis of the bitcoin transaction network. PLOS ONE, 9(2):e86197, 2014. Google ScholarGoogle Scholar
  12. G. Kossinets and D. J. Watts. Empirical analysis of an evolving social network. Science, 311(5757):88--90, 2006. Google ScholarGoogle ScholarCross RefCross Ref
  13. L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki. Temporal motifs in time-dependent networks. JSTAT, 2011(11):P11005, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Latapy. Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoretical Computer Science, 407(1):458--473, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In CHI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg. Governance in social media: A case study of the wikipedia promotion process. In ICWSM, 2010.Google ScholarGoogle Scholar
  17. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters. TKDD, 1(1):2, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon. Superfamilies of evolved and designed networks. Science, 303(5663):1538--1542, 2004. Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple building blocks of complex networks. Science, 298(5594):824--827, 2002. Google ScholarGoogle ScholarCross RefCross Ref
  20. M. E. Newman. The structure and function of complex networks. SIAM Review, 45(2):167--256, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. Panzarasa, T. Opsahl, and K. M. Carley. Patterns and dynamics of users' behavior and interaction: Network analysis of an online community. JASIST, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Pinar, C. Seshadhri, and V. Vishal. ESCAPE: Efficiently Counting All 5-Vertex Subgraphs. arXiv: 1610.09411, 2016.Google ScholarGoogle Scholar
  23. C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A framework for community identification in dynamic social networks. In KDD, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping the empirical and extremal geography of large graph collections. In WWW, 2013.Google ScholarGoogle Scholar
  25. A. Vazquez, R. Dobrin, D. Sergi, J.-P. Eckmann, Z. Oltvai, and A.-L. Barabási. The topological relationship between the large-scale attributes and local interaction patterns of complex networks. PNAS, 101(52):17940--17945, 2004. Google ScholarGoogle ScholarCross RefCross Ref
  26. B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction in Facebook. In WOSN, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Wernicke and F. Rasche. Fanmod: a tool for fast network motif detection. Bioinformatics, 22(9):1152--1153, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Wu, C. Zhou, J. Xiao, J. Kurths, and H. J. Schellnhuber. Evidence for a bimodal distribution in human communication. PNAS, 107(44):18803--18808, 2010. Google ScholarGoogle ScholarCross RefCross Ref
  29. Ö. N. Yaveroğlu, N. Malod-Dognin, D. Davis, Z. Levnajic, V. Janjic, R. Karapandza, A. Stojmirovic, and N. Pržulj. Revealing the hidden language of complex networks. Scientific Reports, 4, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  30. Q. Zhao, Y. Tian, Q. He, N. Oliver, R. Jin, and W.-C. Lee. Communication motifs: a tool to characterize social communications. In CIKM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Motifs in Temporal Networks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          WSDM '17: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining
          February 2017
          868 pages
          ISBN:9781450346757
          DOI:10.1145/3018661

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 February 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          WSDM '17 Paper Acceptance Rate80of505submissions,16%Overall Acceptance Rate498of2,863submissions,17%

          Upcoming Conference

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader