skip to main content
10.1145/3035918.3064019acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article
Public Access

Controlling False Discoveries During Interactive Data Exploration

Published:09 May 2017Publication History

ABSTRACT

Recent tools for interactive data exploration significantly increase the chance that users make false discoveries. They allow users to (visually) examine many hypotheses and make inference with simple interactions, and thus incur the issue commonly known in statistics as the "multiple hypothesis testing error." In this work, we propose a solution to integrate the control of multiple hypothesis testing into interactive data exploration systems. A key insight is that existing methods for controlling the false discovery rate (such as FDR) are not directly applicable to interactive data exploration. We therefore discuss a set of new control procedures that are better suited for this task and integrate them in our system, QUDE. Via extensive experiments on both real-world and synthetic data sets we demonstrate how QUDE can help experts and novice users alike to efficiently control false discoveries.

References

  1. E. Aharoni and S. Rosset. Generalized-investing: definitions, optimality results and application to public databases. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(4):771--794, 2014.Google ScholarGoogle Scholar
  2. Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), pages 289--300, 1995.Google ScholarGoogle Scholar
  3. Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency. Annals of statistics, pages 1165--1188, 2001.Google ScholarGoogle Scholar
  4. D. A. Berry et al. Bayesian perspectives on multiple comparisons. Journal of Statistical Planning and Inference, 82(1--2), 1999.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. Blum and M. Hardt. The ladder: A reliable leaderboard for machine learning competitions. arXiv preprint arXiv:1502.04585, 2015.Google ScholarGoogle Scholar
  6. C. E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Libreria internazionale Seeber, 1936.Google ScholarGoogle Scholar
  7. A. Burgess, R. Wagner, R. Jennings, and H. B. Barlow. Efficiency of human visual signal discrimination. Science, 214(4516):93--94, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska. Vizdom: Interactive analytics through pen and touch. Proceedings of the VLDB Endowment, 8(12):2024--2027, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7:1--30, Dec. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. E. Dimara, A. Bezerianos, and P. Dragicevic. The attraction effect in information visualization. IEEE Trans. Vis. Comput. Graph., 23(1), 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. L. Roth. Preserving statistical validity in adaptive data analysis. In STOC, pages 117--126. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. B. Efron and T. Hastie. Computer Age Statistical Inference, volume 5. Cambridge University Press, 2016. Google ScholarGoogle ScholarCross RefCross Ref
  13. R. Fisher. The design of experiments. Oliver and Boyd, Edinburgh, Scotland, 1935.Google ScholarGoogle Scholar
  14. D. P. Foster and R. A. Stine. α-investing: a procedure for sequential control of expected false discoveries. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(2):429--444, 2008.Google ScholarGoogle Scholar
  15. M. G. G'Sell et al. Sequential selection procedures and false discovery rate control. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(2), 2016.Google ScholarGoogle Scholar
  16. H. Guo, S. Gomez, C. Ziemkiewicz, and D. Laidlaw. A case study using visualization interaction logs and insight. IEEE Trans. Vis. Comput. Graph., 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. Hanrahan. Analytic database technologies for a new kind of user: the data enthusiast. In SIGMOD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Y. Hochberg. A sharper bonferroni procedure for multiple tests of significance. Biometrika, 75(4):800--802, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  19. S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, pages 65--70, 1979.Google ScholarGoogle Scholar
  20. J. P. A. Ioannidis. Why most published research findings are false. Plos Med, 2(8), 2005.Google ScholarGoogle Scholar
  21. H. Jeffreys. The theory of probability. OUP Oxford, 1998.Google ScholarGoogle Scholar
  22. M. I. Jordan. The era of big data. ISBA Bulletin, 18(2), 2011.Google ScholarGoogle Scholar
  23. N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and interactive cube exploration. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on, pages 472--483. IEEE, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  24. R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI'95, pages 1137--1143, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Lichman. UCI machine learning repository, 2013.Google ScholarGoogle Scholar
  26. Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big data. In Computer Graphics Forum, volume 32, pages 421--430. Wiley Online Library, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. H. McDonald. Handbook of Biological Statistics. Sparky House Publishing, Baltimore, Maryland, USA, second edition, 2009.Google ScholarGoogle Scholar
  28. J. Neyman and E. L. Scott. Consistent estimates based on partially consistent observations. Econometrica: Journal of the Econometric Society, pages 1--32, 1948.Google ScholarGoogle ScholarCross RefCross Ref
  29. P. Pirolli and S. Card. The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In Proceedings of international conference on intelligence analysis, volume 5, pages 2--4, 2005.Google ScholarGoogle Scholar
  30. P. Refaeilzadeh, L. Tang, H. Liu, and M. T. ÖZSU. Cross-Validation, pages 532--538. Springer US, Boston, MA, 2009.Google ScholarGoogle Scholar
  31. M. Schemper. A survey of permutation tests for censored survival data. Communications in Statistics-Theory and Methods, 13(13):1655--1665, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. P. Shaffer. Multiple hypothesis testing. Annual review of psychology, 46, 1995.Google ScholarGoogle Scholar
  33. Y. B. Shrinivasan and J. J. van Wijk. Supporting the analytical reasoning process in information visualization. In Proceedings of the SIGCHI conference on human factors in computing systems, pages 1237--1246. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Z. Šidák. Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62(318):626--633, 1967.Google ScholarGoogle Scholar
  35. R. J. Simes. An improved bonferroni procedure for multiple tests of significance. Biometrika, 73(3):751--754, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  36. E. Zgraggen, A. Galakatos, A. Crotty, J.-D. Fekete, and T. Kraska. How progressive visualizations affect exploratory analysis. IEEE Trans. Vis. Comput. Graph., 2016.Google ScholarGoogle Scholar
  37. A. F. Zuur, E. N. Ieno, and C. S. Elphick. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1):3--14, 2010.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Controlling False Discoveries During Interactive Data Exploration

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader