skip to main content
10.1145/3173574.3173761acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Animated Edge Textures in Node-Link Diagrams: a Design Space and Initial Evaluation

Authors Info & Claims
Published:19 April 2018Publication History

ABSTRACT

Network edge data attributes are usually encoded using color, opacity, stroke thickness and stroke pattern, or some combination thereof. In addition to these static variables, it is also possible to animate dynamic particles flowing along the edges. This opens a larger design space of animated edge textures, featuring additional visual encodings that have potential not only in terms of visual mapping capacity but also playfulness and aesthetics. Such animated edge textures have been used in several commercial and design-oriented visualizations, but to our knowledge almost always in a relatively ad hoc manner. We introduce a design space and Web-based framework for generating animated edge textures, and report on an initial evaluation of particle properties - particle speed, pattern and frequency - in terms of visual perception.

Skip Supplemental Material Section

Supplemental Material

pn2188-file3.mp4

mp4

22.2 MB

pn2188-file5.mp4

mp4

4.7 MB

References

  1. Daniel Archambault and Helen C. Purchase. 2016. On the effective visualisation of dynamic attribute cascades. Information Visualization 15, 1 (2016), 51--63.Google ScholarGoogle ScholarCross RefCross Ref
  2. B. Bach, N. Henry Riche, C. Hurter, K. Marriott, and T. Dwyer. 2017. Towards Unambiguous Edge Bundling: Investigating Confluent Drawings for Network Visualization. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan 2017), 541--550. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Lyn Bartram. 1997. Perceptual and Interpretative Properties of Motion for Information Visualization. In Proceedings of the 1997 Workshop on New Paradigms in Information Visualization and Manipulation (NPIV '97). ACM, New York, NY, USA, 3--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Lyn Bartram and Colin Ware. 2002. Filtering and brushing with motion. Information Visualization 1, 1 (2002), 66--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Lyn Bartram and Miao Yao. 2008. Animating causal overlays. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 751--758. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf. 2014. The State of the Art in Visualizing Dynamic Graphs. In EuroVis - STARs, R. Borgo, R. Maciejewski, and I. Viola (Eds.). The Eurographics Association.Google ScholarGoogle Scholar
  7. R. A. Becker, S. G. Eick, and A. R. Wilks. 1995. Visualizing network data. IEEE Transactions on Visualization and Computer Graphics 1, 1 (Mar 1995), 16--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jorik Blaas, Charl Botha, Edward Grundy, Mark Jones, Robert Laramee, and Frits Post. 2009. Smooth Graphs for Visual Exploration of Higher-Order State Transitions. IEEE Transactions on Visualization and Computer Graphics 15, 6 (Nov. 2009), 969--976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 Data-Driven Documents. IEEE Transactions on Visualization and Computer Graphics 17, 12 (Dec. 2011), 2301--2309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Stefan Buschmann, Matthias Trapp, and Jürgen Döllner. 2016. Animated visualization of spatial--temporal trajectory data for air-traffic analysis. The Visual Computer 32, 3 (2016), 371--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Wei Chen, Fangzhou Guo, and Fei-Yue Wang. 2015. A survey of traffic data visualization. IEEE Transactions on Intelligent Transportation Systems 16, 6 (2015), 2970--2984.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fanny Chevalier, Nathalie Henry Riche, Catherine Plaisant, Amira Chalbi, and Christophe Hurter. 2016. Animations 25 Years Later: New Roles and Opportunities. In Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI '16). ACM, New York, NY, USA, 280--287. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Owen Cornec and Romain Vuillemot. 2015. Visualizing the Scale of World Economies. In VisWeek 2015 Electronic Conference Proceedings - Poster.Google ScholarGoogle Scholar
  14. Pedro Cruz. 2015. Wrongfully right: applications of semantic figurative metaphors in information visualization. In IEEE VIS Arts Program (VISAP). 14--21.Google ScholarGoogle Scholar
  15. Jos Dirksen. 2015. Learning Three.js -- the JavaScript 3D Library for WebGL. Packt Publishing Ltd.Google ScholarGoogle Scholar
  16. Jon Driver and Peter McLeod. 1992. Reversing Visual Search Asymmetries With Conjunctions of Movement and Orientation. Journal of Experimental Psychology: Human Perception and Performance 18, 1 (1992), 22--33.Google ScholarGoogle ScholarCross RefCross Ref
  17. Jon Driver, Peter McLeod, and Zoltan Dienes. 1992. Motion coherence and conjunction search: Implications for guided search theory. Perception & Psychophysics 51, 1 (1992), 79--85.Google ScholarGoogle ScholarCross RefCross Ref
  18. Tim Dwyer. 2013. cola.js. http://marvl.infotech.monash.edu/webcola/ - Last accessed 2017-09-08. (2013).Google ScholarGoogle Scholar
  19. R. Etemadpour, P. Murray, and A. G. Forbes. 2014. Evaluating density-based motion for big data visual analytics. In 2014 IEEE International Conference on Big Data (Big Data). 451--460.Google ScholarGoogle Scholar
  20. Gustav Fechner. 1966. Elements of psychophysics. Vol. I. American Psychological Association.Google ScholarGoogle Scholar
  21. Chao Feng, Lyn Bartram, and Bernhard E. Riecke. 2014. Evaluating Affective Features of 3D Motionscapes. In Proceedings of the ACM Symposium on Applied Perception (SAP '14). ACM, New York, NY, USA, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Danyel Fisher. 2010. Animation for visualization: opportunities and drawbacks. In Beautiful Visualization. O'Reilly Media, Chapter 19, 329--352.Google ScholarGoogle Scholar
  23. Steven L. Franconeri and Daniel J. Simons. 2003. Moving and looming stimuli capture attention. Perception & Psychophysics 65, 7 (2003), 999--1010.Google ScholarGoogle ScholarCross RefCross Ref
  24. Emilien Ghomi, Guillaume Faure, Stéphane Huot, Olivier Chapuis, and Michel Beaudouin-Lafon. 2012. Using rhythmic patterns as an input method. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1253--1262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. John A. Greenwood and Mark Edwards. 2009. The detection of multiple global directions: Capacity limits with spatially segregated and transparent-motion signals. Journal of Vision 9, 1 (2009), 40.Google ScholarGoogle ScholarCross RefCross Ref
  26. Steffen Hadlak, Heidrun Schumann, and Hans-Jörg Schulz. 2015. A Survey of Multi-faceted Graph Visualization. In Eurographics Conference on Visualization (EuroVis) - STARs, R. Borgo, F. Ganovelli, and I. Viola (Eds.). The Eurographics Association.Google ScholarGoogle Scholar
  27. S. Haroz, K. L. Ma, and K. Heitmann. 2008. Multiple Uncertainties in Time-Variant Cosmological Particle Data. In IEEE Pacific Visualization Symposium. 207--214.Google ScholarGoogle Scholar
  28. Steve Haroz and David Whitney. 2010. Temporal Thresholds for Feature Detection in Flow Visualization. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization (APGV '10). ACM, 163--163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Steve Haroz and David Whitney. 2012. How Capacity Limits of Attention Influence Information Visualization Effectiveness. IEEE Transactions on Visualization and Computer Graphics 18, 12 (Dec. 2012), 2402--2410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Fritz Heider and Marianne Simmel. 1944. An experimental study of apparent behavior. The American Journal of Psychology 57, 2 (1944), 243--259.Google ScholarGoogle ScholarCross RefCross Ref
  31. Nathalie Henry Riche, Tim Dwyer, Bongshin Lee, and Sheelagh Carpendale. 2012. Exploring the Design Space of Interactive Link Curvature in Network Diagrams. In Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI '12). ACM, New York, NY, USA, 506--513. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Uta Hinrichs, Simon Butscher, Jens Müller, and Harald Reiterer. 2016. Diving in at the deep end: the value of alternative in-situ approaches for systematic library search. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 4634--4646. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J Hohnsbein and S Mateeff. 1998. The time it takes to detect changes in speed and direction of visual motion. Vision Research 38, 17 (1998), 2569 -- 2573.Google ScholarGoogle ScholarCross RefCross Ref
  34. Danny Holten, Petra Isenberg, Jarke J. van Wijk, and Jean-Daniel Fekete. 2011. An Extended Evaluation of the Readability of Tapered, Animated, and Textured Directed-edge Representations in Node-link Graphs. In Proceedings of the 2011 IEEE Pacific Visualization Symposium (PacifiVis '11). IEEE Computer Society, 195--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Daniel E Huber and Christopher G Healey. 2005. Visualizing data with motion. In Visualization, 2005. VIS 05. IEEE. IEEE, 527--534.Google ScholarGoogle Scholar
  36. M. Itoh, D. Yokoyama, M. Toyoda, Y. Tomita, S. Kawamura, and M. Kitsuregawa. 2016. Visual Exploration of Changes in Passenger Flows and Tweets on Mega-City Metro Network. IEEE Transactions on Big Data 2, 1 (March 2016), 85--99.Google ScholarGoogle ScholarCross RefCross Ref
  37. Richard B Ivry and Asher Cohen. 1992. Asymmetry in visual search for targets defined by differences in movement speed. Journal of Experimental Psychology: Human Perception and Performance 18 (1992), 1045--1045.Google ScholarGoogle ScholarCross RefCross Ref
  38. Paul Jaccard. 1912. The distribution of the flora in the alpine zone. New phytologist 11, 2 (1912), 37--50.Google ScholarGoogle Scholar
  39. M. Lockyer, L. Bartram, and B. E. Riecke. 2011. Simple Motion Textures for Ambient Affect. In Proceedings of the International Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging (CAe '11). ACM, New York, NY, USA, 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M Lockyer, L Bartram, T Schiphost, and K Studd. 2016. Enhancing Visualization with Expressive Motion. Electronic Imaging 2016, 16 (2016), 1--6.Google ScholarGoogle Scholar
  41. David L MacAdam. 1942. Visual sensitivities to color differences in daylight. Journal of the Optical Society of America 32, 5 (1942), 247--274.Google ScholarGoogle ScholarCross RefCross Ref
  42. S Mateeff, G Dimitrov, and J Hohnsbein. 1995. Temporal thresholds and reaction time to changes in velocity of visual motion. Vision research 35, 3 (1995), 355--363.Google ScholarGoogle Scholar
  43. Peter McLeod, Jon Driver, and Jennie Crisp. 1988. Visual search for a conjunction of movement and form is parallel. Nature 332, 6160 (03 1988), 154--155.Google ScholarGoogle Scholar
  44. Tony McLoughlin, Robert S Laramee, Ronald Peikert, Frits H Post, and Min Chen. 2010. Over Two Decades of Integration-Based, Geometric Flow Visualization. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1807--1829.Google ScholarGoogle Scholar
  45. A. Michotte. 1963. The perception of causality. Basic Books.Google ScholarGoogle Scholar
  46. Till Nagel, Christopher Pietsch, and Marian Dörk. 2016. Staged Analysis: From Evocative to Comparative Visualizations of Urban Mobility. In IEEE VIS Arts Program (VISAP). 23--30.Google ScholarGoogle Scholar
  47. Ken Nakayama and Gerald H. Silverman. 1986. Serial and parallel processing of visual feature conjunctions. Nature 320, 6059 (03 1986), 264--265.Google ScholarGoogle Scholar
  48. Guy A. Orban, Frank Van Calenbergh, Bart De Bruyn, and Hugo Maes. 1985. Velocity discrimination in central and peripheral visual field. Journal of the Optical Society of America A 2, 11 (Nov 1985), 1836--1847.Google ScholarGoogle ScholarCross RefCross Ref
  49. Emmanuel Pietriga and Denis Barkats. 2014. Antenna dance at ALMA. http://www.almaobservatory.org/en/ announcement/antenna-dance-at-alma/ - Last accessed 2018-01-04. (2014).Google ScholarGoogle Scholar
  50. Roeland Scheepens, Christophe Hurter, Huub Van De Wetering, and Jarke J Van Wijk. 2016. Visualization, selection, and analysis of traffic flows. IEEE transactions on visualization and computer graphics 22, 1 (2016), 379--388.Google ScholarGoogle Scholar
  51. Jason M. Scimeca and Steven L. Franconeri. 2015. Selecting and tracking multiple objects. Wiley Interdisciplinary Reviews: Cognitive Science 6, 2 (2015), 109--118.Google ScholarGoogle ScholarCross RefCross Ref
  52. R. Sekuler, S.N.J. Watamaniuk, and R. Blake. 2004. Perception of Visual Motion. In Stevens' Handbook of Experimental Psychology: Vol. 1 Sensation and perception (3rd edition). Wiley & Sons, 121-- 176.Google ScholarGoogle Scholar
  53. Tatiana Tekušová, Jörn Kohlhammer, Slawomir J. Skwarek, and Galina V. Paramei. 2008. Perception of Direction Changes in Animated Data Visualization. In Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization (APGV '08). ACM, 205--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Kim Thomas. 2007. Just noticeable difference and tempo change. Journal of Scientific Psychology 2 (2007), 14--20.Google ScholarGoogle Scholar
  55. Stefan Tilkov and Steve Vinoski. 2010. Node. js: Using JavaScript to build high-performance network programs. IEEE Internet Computing 14, 6 (2010), 80--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Anne Treisman. 1985. Preattentive Processing in Vision. Comput. Vision Graph. Image Process. 31, 2 (Aug. 1985), 156--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. 2002. Animation: Can It Facilitate? Int. J. Hum.-Comput. Stud. 57, 4 (Oct. 2002), 247--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Tatiana von Landesberger, Simon Diel, Sebastian Bremm, and Dieter W Fellner. 2015. Visual analysis of contagion in networks. Information Visualization 14, 2 (2015), 93--110.Google ScholarGoogle ScholarCross RefCross Ref
  59. T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J.J. van Wijk, J.-D. Fekete, and D.W. Fellner. 2011. Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges. Computer Graphics Forum 30, 6 (2011), 1719--1749.Google ScholarGoogle ScholarCross RefCross Ref
  60. Colin Ware and Robert Bobrow. 2004. Motion to Support Rapid Interactive Queries on Node-link Diagrams. ACM Trans. Appl. Percept. 1, 1 (July 2004), 3--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Colin Ware, Joseph Bonner, William Knight, and Rod Cater. 1992. Moving icons as a human interrupt. International Journal of Human-Computer Interaction 4, 4 (1992), 341--348.Google ScholarGoogle ScholarCross RefCross Ref
  62. Colin Ware, Helen Purchase, Linda Colpoys, and Matthew McGill. 2002. Cognitive Measurements of Graph Aesthetics. Information Visualization 1, 2 (2002), 103--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Martin Wattenberg. 2006. Visual Exploration of Multivariate Graphs. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '06). ACM, New York, NY, USA, 811--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. D. Weiskopf. 2004. On the role of color in the perception of motion in animated visualizations. In IEEE Visualization 2004. 305--312. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Animated Edge Textures in Node-Link Diagrams: a Design Space and Initial Evaluation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '18: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
      April 2018
      8489 pages
      ISBN:9781450356206
      DOI:10.1145/3173574

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 April 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '18 Paper Acceptance Rate666of2,590submissions,26%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader