skip to main content
10.1145/3183584.3183612acmotherconferencesArticle/Chapter ViewAbstractPublication PagesncsConference Proceedingsconference-collections
research-article

Neuromorphic computing for temporal scientific data classification

Published:17 July 2017Publication History

ABSTRACT

In this work, we apply a spiking neural network model and an associated memristive neuromorphic implementation to an application in classifying temporal scientific data. We demonstrate that the spiking neural network model achieves comparable results to a previously reported convolutional neural network model, with significantly fewer neurons and synapses required.

References

  1. S. Agostinelli et al. 2003. GEANT4: A Simulation toolkit. Nucl.Instrum.Meth. A506 (2003), 250--303.Google ScholarGoogle ScholarCross RefCross Ref
  2. Himanshu Akolkar, Cedric Meyer, Xavier Clady, Olivier Marre, Chiara Bartolozzi, Stefano Panzeri, and Ryad Benosman. 2015. What can neuromorphic event-driven precise timing add to spike-based pattern recognition? Neural computation (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. 2015. TrueNorth: Design and Tool Flow of a 65mW 1 Million Neuron Programmable Neurosynaptic Chip. (2015).Google ScholarGoogle Scholar
  4. L Aliaga, L Bagby, B Baldin, A Baumbaugh, A Bodek, R Bradford, WK Brooks, D Boehnlein, S Boyd, H Budd, et al. 2014. Design, calibration, and performance of the MINERvA detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 743 (2014), 130--159.Google ScholarGoogle ScholarCross RefCross Ref
  5. Costas Andreopoulos, A Bell, D Bhattacharya, F Cavanna, J Dobson, S Dytman, H Gallagher, P Guzowski, R Hatcher, P Kehayias, et al. 2010. The GENIE neutrino monte carlo generator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 614, 1 (2010), 87--104.Google ScholarGoogle ScholarCross RefCross Ref
  6. Sander M Bohte, Joost N Kok, and Han La Poutre. 2002. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48, 1 (2002), 17--37.Google ScholarGoogle ScholarCross RefCross Ref
  7. Yu Chen, Gang Liu, Cheng Wang, Wenbin Zhang, Run-Wei Li, and Luxing Wang. 2014. Polymer memristor for information storage and neuromorphic applications. Materials Horizons 1, 5 (2014), 489--506.Google ScholarGoogle ScholarCross RefCross Ref
  8. Mark E Dean and Christopher Daffron. 2016. A VLSI Design for Neuromorphic Computing. In VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on. IEEE, 87--92.Google ScholarGoogle ScholarCross RefCross Ref
  9. Bruce Denby, Patrick Garda, Bertrand Granado, Christian Kiesling, Jean-Christophe Prévotet, and Andreas Wassatsch. 2003. Fast triggering in high-energy physics experiments using hardware neural networks. Neural Networks, IEEE Transactions on 14, 5 (2003), 1010--1027. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Adam Disney, John Reynolds, Catherine D Schuman, Aleksander Klibisz, Aaron Young, and James S Plank. 2016. DANNA: A neuromorphic software ecosystem. Biologically Inspired Cognitive Architectures 17 (2016), 49--56.Google ScholarGoogle ScholarCross RefCross Ref
  11. Margaret Drouhard, Catherine D Schuman, J Douglas Birdwell, and Mark E Dean. 2014. Visual analytics for neuroscience-inspired dynamic architectures. In Foundations of Computational Intelligence (FOCI), 2014 IEEE Symposium on. IEEE, 106--113.Google ScholarGoogle ScholarCross RefCross Ref
  12. Victor Erokhin, Tatiana Berzina, Anteo Smerieri, Paolo Camorani, Svetlana Erokhina, and Marco P Fontana. 2010. Bio-inspired adaptive networks based on organic memristors. Nano Communication Networks 1, 2 (2010), 108--117.Google ScholarGoogle ScholarCross RefCross Ref
  13. Stefano Fusi. 2002. Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates. Biological cybernetics 87, 5 (2002), 459--470.Google ScholarGoogle Scholar
  14. Eugene M Izhikevich. 2003. Simple model of spiking neurons. IEEE Transactions on neural networks 14, 6 (2003), 1569--1572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B Bhadviya, Pinaki Mazumder, and Wei Lu. 2010. Nanoscale memristor device as synapse in neuromorphic systems. Nano letters 10, 4(2010), 1297--1301.Google ScholarGoogle Scholar
  16. Nikola Kasabov, Kshitij Dhoble, Nuttapod Nuntalid, and Giacomo Indiveri. 2013. Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition. Neural Networks 41 (2013), 188--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Dhireesha Kudithipudi, Qutaiba Saleh, Cory Merkel, James Thesing, and Bryant Wysocki. 2015. Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing. Frontiers in Neuroscience 9 (2015), 502.Google ScholarGoogle Scholar
  18. Bernabé Linares-Barranco and Teresa Serrano-Gotarredona. 2009. Memristance can explain spike-time-dependent-plasticity in neural synapses. (2009).Google ScholarGoogle Scholar
  19. Wolfgang Maass. 1997. Networks of spiking neurons: the third generation of neural network models. Neural networks 10, 9 (1997), 1659--1671. Google ScholarGoogle Scholar
  20. Liam P Maguire, T Martin McGinnity, Brendan Glackin, Arfan Ghani, Ammar Belatreche, and Jim Harkin. 2007. Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing 71, 1 (2007), 13--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Garrick Orchard, Xavier Lagorce, Christoph Posch, Steve B Furber, Ryad Benosman, and Francesco Galluppi. 2015. Real-time event-driven spiking neural network object recognition on the SpiNNaker platform. In Circuits and Systems (ISCAS), 2015 IEEE International Symposium on. IEEE, 2413--2416.Google ScholarGoogle ScholarCross RefCross Ref
  22. NG Pavlidis, OK Tasoulis, Vassilis P Plagianakos, G Nikiforidis, and MN Vrahatis. 2005. Spiking neural network training using evolutionary algorithms. In Neural Networks, 2005. IJCNN'05. Proceedings. 2005 IEEE International Joint Conference on, Vol. 4. IEEE, 2190--2194.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. S. Plank, G. S. Rose, M. E. Dean, and C. D. Schuman. 2017. A CAD System for Exploring Neuromorphic Computing with Emerging Technologies. In 42nd Annual GOMACTech Conference. Reno, NV.Google ScholarGoogle Scholar
  24. Anvesh Polepalli, Nicholas Soures, and Dhireesha Kudithipudi. 2016. Digital neuromorphic design of a Liquid State Machine for real-time processing. In Rebooting Computing (ICRC), IEEE International Conference on. IEEE, 1--8.Google ScholarGoogle Scholar
  25. Mirko Prezioso, Farnood Merrikh-Bayat, BD Hoskins, GC Adam, Konstantin K Likharev, and Dmitri B Strukov. 2015. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 7550 (2015), 61--64.Google ScholarGoogle Scholar
  26. Benjamin Schrauwen, Michiel DâĂŹHaene, David Verstraeten, and Jan Van Campenhout. 2008. Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural networks 21, 2 (2008), 511--523. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Catherine D Schuman, J Douglas Birdwell, and Mark E Dean. 2014. Spatiotemporal classification using neuroscience-inspired dynamic architectures. Procedia Computer Science 41 (2014), 89--97.Google ScholarGoogle ScholarCross RefCross Ref
  28. Catherine D Schuman, Adam Disney, Susheela P Singh, Grant Bruer, J Parker Mitchell, Aleksander Klibisz, and James S Plank. 2016. Parallel evolutionary optimization for neuromorphic network training. In Proceedings of the Workshop on Machine Learning in High Performance Computing Environments. IEEE Press, 36--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Catherine D Schuman, James S Plank, Adam Disney, and John Reynolds. 2016. An evolutionary optimization framework for neural networks and neuromorphic architectures. In Neural Networks (IJCNN), 2016 International Joint Conference on. IEEE, 145--154.Google ScholarGoogle ScholarCross RefCross Ref
  30. Teresa Serrano-Gotarredona, Timothée Masquelier, Themistoklis Prodromakis, Giacomo Indiveri, and Bernabe Linares-Barranco. 2013. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Frontiers in neuroscience 7 (2013), 2.Google ScholarGoogle Scholar
  31. Juncheng Shen, De Ma, Zonghua Gu, Ming Zhang, Xiaolei Zhu, Xiaoqiang Xu, Qi Xu, Yangjing Shen, and Gang Pan. 2016. Darwin: a neuromorphic hardware co-processor based on Spiking Neural Networks. Science China Information Sciences (2016), 1--5.Google ScholarGoogle Scholar
  32. Sen Song, Kenneth D Miller, and Larry F Abbott. 2000. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature neuroscience 3, 9 (2000), 919--926.Google ScholarGoogle Scholar
  33. Adam M. Terwilliger, Gabriel N. Perdue, David Isele, Robert M. Patton, and Steven R. Young. 2017. Vertex Reconstruction of Neutrino Interactions using Deep Learning. In Neural Networks (IJCNN), 2017 International Joint Conference on. In Press.Google ScholarGoogle Scholar
  34. Andres Upegui, Carlos Andrés Pena-Reyes, and Eduardo Sanchez. 2005. An FPGA platform for on-line topology exploration of spiking neural networks. Microprocessors and microsystems 29, 5 (2005), 211--223.Google ScholarGoogle Scholar
  35. Salvatore Vitabile, Vincenzo Conti, Fulvio Gennaro, and Filippo Sorbello. 2005. Efficient MLP digital implementation on FPGA. In Digital System Design, 2005. Proceedings. 8th Euromicro Conference on. IEEE, 218--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Jianguo Xin and Mark J Embrechts. 2001. Supervised learning with spiking neural networks. In Neural Networks, 2001. Proceedings. IJCNN'01. International Joint Conference on, Vol. 3. IEEE, 1772--1777.Google ScholarGoogle Scholar

Index Terms

  1. Neuromorphic computing for temporal scientific data classification

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            NCS '17: Proceedings of the Neuromorphic Computing Symposium
            July 2017
            86 pages
            ISBN:9781450364423
            DOI:10.1145/3183584

            Copyright © 2017 ACM

            Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 17 July 2017

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            NCS '17 Paper Acceptance Rate12of15submissions,80%Overall Acceptance Rate12of15submissions,80%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader