skip to main content
10.1145/3206505.3206566acmconferencesArticle/Chapter ViewAbstractPublication PagesaviConference Proceedingsconference-collections
demonstration

Transparency-based information filtering on 2D/3D geographical maps

Published:29 May 2018Publication History

ABSTRACT

The presentation of search results in GIS can expose the user to cluttered geographical maps, challenging the identification of relevant information. In order to address this issue, we propose a visualization model supporting interactive information filtering on 2D/3D maps. Our model is based on the introduction of transparency sliders that enable the user to tune the opacity, and thus the emphasis, of data categories in the map. In this way, he or she can focus the maps on the most relevant types of information for the task to be performed. A test with users provided positive results concerning the efficacy of our model.

References

  1. V. Agafonkin. 2017. Leaflet - an open-source JavaScript library for mobile-friendly interactive maps. http://leafletjs.com/.Google ScholarGoogle Scholar
  2. K. Al-Kodmany. 1999. Using visualization techniques for enhancing public participation in planning and design: process, implementation, and evaluation. Landscape and urban planning 45, 1 (1999), 37--45.Google ScholarGoogle Scholar
  3. L. Ardissono and M. Delsanto, M. Lucenteforte, N. Mauro, A. Savoca, and D. Scanu. 2018. Map-based visualization of 2D/3D spatial data via stylization and tuning of information emphasis. In Proc. of ACM AVI 2018. ACM, Castiglione della Pescaia, Italy, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. Andrienko and N. Andrienko. 2009. Interactive maps for visual data exploration. International Journal of Geographical Information Science 13, 4 (2009), 355--374.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Angelini, N. Ferro, G. Santucci, and G. Silvello. 2013. Improving Ranking Evaluation Employing Visual Analytics. In Proc. of CLEF 2013: Information Access Evaluation. Multilinguality, Multimodality, and Visualization. Valencia, Spain, 29--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. L. Ardissono, M. Lucenteforte, N. Mauro, A. Savoca, A. Voghera, and L. La Riccia. 2017. Semantic Interpretation of Search Queries for Personalization. In Proc. of UMAP 2017 Adjunct. ACM, 101--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. Ardissono, M. Lucenteforte, N. Mauro, A. Savoca, A. Voghera, and L. La Riccia. 2017. OnToMap - Semantic Community Maps for knowledge sharing. In Proc. of Hypertext 2017. ACM, 317--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. Ardissono, N. Mauro, and A. Savoca. 2017. Supporting Knowledge Sharing and Learning via Semantic Geographical Maps. In Proc of Smart Learn '17. ACM, 3--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S.K. Card, J.D. Mackinlay, and B. Shneiderman (Eds.). 1999. Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cesium Consortium. 2018. Cesium -An open-source JavaScript library for world-class 3D globes and maps. https://cesiumjs.org/.Google ScholarGoogle Scholar
  11. S. Deeswe and R. Kosala. 2015. An integrated search interface with 3D visualization. Procedia Computer Science 59 (2015), 483--492.Google ScholarGoogle ScholarCross RefCross Ref
  12. M.D. Dunlop, B. Elsey, and M. Montgomery Masters. 2007. Dynamic Visualisation of Ski Data: A Context Aware Mobile Piste Map. In Proc. of the 9th Int. Conf. on Human Computer Interaction with Mobile Devices and Services (MobileHCI '07). ACM, New York, NY, USA, 375--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Elias, J. Elsonand D. Fisher, and J. Howell. 2008. "Do I live in a flood basin?" Synthesizing ten thousand maps. In Proc. of the SIGCHI Conf on Human factors in computing systems. ACM, New York, USA, 255--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. B.L. Harrison, H. Ishii, K.J. Vicente, and W.A.S. Buxton. 1995. Transparent layered user interfaces: an evaluation of a display design to enhance focused and divided attention. In Proc. of the SIGCHI Conf on Human factors in computing systems. ACM, New York, USA, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. K. Hornbaek and M. Hertzum. 2011. The notion of overview in information visualization. International Journal of Human-Computer Studies 69 (2011), 509--525. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Y. Hu, Z. Lv, J. Wu, K. Janowicz, X. Zhao, and B. Yu. 2015. A multistage collaborative 3D GIS to support public participation. Int. Journal of Digital Earth 8, 3 (2015), 212--234.Google ScholarGoogle ScholarCross RefCross Ref
  17. A. Hunter, S. Steiniger, B. Sandalack, S. Liang, L. Kattan, A. Shalaby, F. Alaniz Uribe, C. Bliss-Taylor, and R. Martinson. 2012. PlanYourPlace - A geospatial infrastructure for sustainable community planning. International Journal of Geomatics and Spatial Analysis 22, 2 (2012), 223--253.Google ScholarGoogle Scholar
  18. U. Isikdag and S. Zlatanova. 2000. Interactive modelling of buildings in Google Earth: A 3D tool for Urban Planning. In Developments in 3D Geo-Information Sciences Lecture Notes in Geoinformation and Cartography. Berlin Heidelberg New York, 52--70.Google ScholarGoogle Scholar
  19. J. Kunkel, B. Loepp, and J. Ziegler. 2017. A 3D space visualization for presenting and manipulating user preferences in collaborative filtering. In Proc. of the 22nd Int. Conf. on Intelligent User Interfaces (IUI '17). ACM, New York, NY, USA, 3--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. Lieberman. 1994. Powers of Ten Thousand: Navigating in Large Information Spaces. In Proc. of the 7th Annual ACM Symposium on User Interface Software and Technology (UIST '94). ACM, New York, NY, USA, 15--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Luz and M. Masoodian. 2014. Readability of a background map layer under a semi-transparent foreground layer. In Proc. of Advanced Visual Interfaces (AVI '14). ACM, New York, NY, USA, 161--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. OpenStreetMap Contributors. 2017. OpenStreetMap. https://www.openstreetmap.org.Google ScholarGoogle Scholar
  23. B. Parker. 2006. Constructing Community Through Maps? Power and Praxis in Community Mapping. The Professional Geographer 58, 4 (2006), 470--484.Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Sen, A.B. Swoap, Q. Li, B. Boatman, I. Dippenaar, R. Gold, M. Ngo, S. Pujol, B. Jackson, and B. Hecht. 2017. Cartograph: Unlocking Spatial Visualization Through Semantic Enhancement. In Proc. of the 22Nd Int. Conf. on Intelligent User Interfaces (IUI '17). ACM, New York, NY, USA, 179--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D.M. Simpson. 2001. Virtual Reality and urban simulation in planning: a literature review and topical bibliography. Journal of Planning Literature 15, 3 (2001), 359--376.Google ScholarGoogle ScholarCross RefCross Ref
  26. Y. Sun and S. Li. 2016. Real-time collaborative GIS: a technological review. ISPRS Journal of Photogrammetry and remote sensing 115 (2016), 143--152.Google ScholarGoogle Scholar
  27. A. Voghera, R. Crivello, L. Ardissono, M. Lucenteforte, A. Savoca, and L. La Riccia. 2016. Production of spatial representations through collaborative mapping. An experiment. In Proc. of 9th Int. Conf. on Innovation in Urban and Regional Planning (INPUT 2016). 356--361.Google ScholarGoogle Scholar
  28. F. Wang, Y. Li, D. Sakamoto, and T. Igarashi. 2014. Hierarchical route maps for efficient navigation. In Proc. of the 19th Int. Conf. on Intelligent User Interfaces (IUI '14). ACM, New York, NY, USA, 169--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Wood, P. Isenberg, T. Isenberg, J. Dykes, N. Boukhelifa, and A. Slingsby. 2012. Sketchy rendering for information visualization. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2749--2758. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Transparency-based information filtering on 2D/3D geographical maps

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          AVI '18: Proceedings of the 2018 International Conference on Advanced Visual Interfaces
          May 2018
          430 pages
          ISBN:9781450356169
          DOI:10.1145/3206505

          Copyright © 2018 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 29 May 2018

          Check for updates

          Qualifiers

          • demonstration

          Acceptance Rates

          AVI '18 Paper Acceptance Rate19of77submissions,25%Overall Acceptance Rate107of408submissions,26%
        • Article Metrics

          • Downloads (Last 12 months)7
          • Downloads (Last 6 weeks)1

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader