skip to main content
10.1145/3581783.3612431acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

Chain of Propagation Prompting for Node Classification

Authors Info & Claims
Published:27 October 2023Publication History

ABSTRACT

Graph Neural Networks (GNN) are an effective technique for node classification, but their performance is easily affected by the quality of the primitive graph and the limited receptive field of message-passing. In this paper, we propose a new self-attention method, namely Chain of Propagation Prompting (CPP), to address the above issues as well as reduce dependence on label information when employing self-attention for node classification. To do this, we apply the self-attention framework to reduce the impact of a low-quality graph and to obtain a maximal receptive field for the message-passing. We also design a simple pattern of message-passing as the prompt to make self-attention capture complex patterns and reduce the dependence on label information. Comprehensive experimental results on real graph datasets demonstrate that CPP outperforms all relevant comparison methods.

References

  1. Shaked Brody, Uri Alon, and Eran Yahav. 2021. How attentive are graph attention networks? arXiv preprint arXiv:2105.14491 (2021).Google ScholarGoogle Scholar
  2. Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 3438--3445.Google ScholarGoogle ScholarCross RefCross Ref
  3. Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, Vol. 29 (2016).Google ScholarGoogle Scholar
  4. Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll. 2019. Graph neural networks for modelling traffic participant interaction. In 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 695--701.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).Google ScholarGoogle Scholar
  6. Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of transformer networks to graphs. arXiv preprint arXiv:2012.09699 (2020).Google ScholarGoogle Scholar
  7. Claudio Gallicchio and Alessio Micheli. 2020. Fast and deep graph neural networks. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 3898--3905.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chen Gao, Xiang Wang, Xiangnan He, and Yong Li. 2022. Graph neural networks for recommender system. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. 1623--1625.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Predict then propagate: Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018).Google ScholarGoogle Scholar
  10. Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffusion improves graph learning. Advances in neural information processing systems, Vol. 32 (2019).Google ScholarGoogle Scholar
  11. Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. Advances in neural information processing systems, Vol. 30 (2017).Google ScholarGoogle Scholar
  12. Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. 2021. Graph-MLP: node classification without message passing in graph. arXiv preprint arXiv:2106.04051 (2021).Google ScholarGoogle Scholar
  13. Mingxuan Ju, Shifu Hou, Yujie Fan, Jianan Zhao, Yanfang Ye, and Liang Zhao. 2022. Adaptive Kernel Graph Neural Network. In 36th AAAI Conference on Artificial Intelligence (AAAI).Google ScholarGoogle Scholar
  14. Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).Google ScholarGoogle Scholar
  15. Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. 2020. Deeprobust: A pytorch library for adversarial attacks and defenses. arXiv preprint arXiv:2005.06149 (2020).Google ScholarGoogle Scholar
  16. Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards deeper graph neural networks. In SIGKDD. 338--348.Google ScholarGoogle Scholar
  17. Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. Comput. Surveys, Vol. 55, 9 (2023), 1--35.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. 2021. Is homophily a necessity for graph neural networks? arXiv preprint arXiv:2106.06134 (2021).Google ScholarGoogle Scholar
  19. Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. 2022. Transformer for graphs: An overview from architecture perspective. arXiv preprint arXiv:2202.08455 (2022).Google ScholarGoogle Scholar
  20. Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2018. Dynamic graph representation learning via self-attention networks. arXiv preprint arXiv:1812.09430 (2018).Google ScholarGoogle Scholar
  21. Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020. Dysat: Deep neural representation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th international conference on web search and data mining. 519--527.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine, Vol. 29, 3 (2008), 93--93.Google ScholarGoogle Scholar
  23. Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. 2021b. Efficient attention: Attention with linear complexities. In CVPR. 3531--3539.Google ScholarGoogle Scholar
  24. Zi-Ang Shen, Tao Luo, Yuan-Ke Zhou, Han Yu, and Pu-Feng Du. 2021a. NPI-GNN: Predicting ncRNA--protein interactions with deep graph neural networks. Briefings in Bioinformatics , Vol. 22, 5 (2021), bbab051.Google ScholarGoogle ScholarCross RefCross Ref
  25. Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial graph augmentation to improve graph contrastive learning. Advances in Neural Information Processing Systems, Vol. 34 (2021), 15920--15933.Google ScholarGoogle Scholar
  26. Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research, Vol. 9, 11 (2008).Google ScholarGoogle Scholar
  27. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems, Vol. 30 (2017).Google ScholarGoogle Scholar
  28. Petar Velivčković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).Google ScholarGoogle Scholar
  29. Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. 2020. Multi-hop attention graph neural network. arXiv preprint arXiv:2009.14332 (2020).Google ScholarGoogle Scholar
  30. Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. 2021. Multi-hop Attention Graph Neural Networks. In IJCAI.Google ScholarGoogle Scholar
  31. Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. 2019. Heterogeneous graph attention network. In The world wide web conference. 2022--2032.Google ScholarGoogle Scholar
  32. Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903 (2022).Google ScholarGoogle Scholar
  33. Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. 2019. Simplifying graph convolutional networks. In International conference on machine learning. PMLR, 6861--6871.Google ScholarGoogle Scholar
  34. Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. 2020. Continuous graph neural networks. In International Conference on Machine Learning. PMLR, 10432--10441.Google ScholarGoogle Scholar
  35. Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2021. An explanation of in-context learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080 (2021).Google ScholarGoogle Scholar
  36. Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).Google ScholarGoogle Scholar
  37. Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. 2021. QA-GNN: Reasoning with language models and knowledge graphs for question answering. arXiv preprint arXiv:2104.06378 (2021).Google ScholarGoogle Scholar
  38. Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly for graph representation? Advances in Neural Information Processing Systems, Vol. 34 (2021), 28877--28888.Google ScholarGoogle Scholar
  39. Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-bert: Only attention is needed for learning graph representations. arXiv preprint arXiv:2001.05140 (2020).Google ScholarGoogle Scholar
  40. Ke Zhang, Xinyan Pu, Jiaxing Li, Jiasong Wu, Huazhong Shu, and Youyong Kong. 2022. Hierarchical Diffusion Scattering Graph Neural Network. In IJCAI.Google ScholarGoogle Scholar
  41. Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. 2021. Graph-less neural networks: Teaching old mlps new tricks via distillation. arXiv preprint arXiv:2110.08727 (2021).Google ScholarGoogle Scholar
  42. Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye. 2021. Heterogeneous graph structure learning for graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence. 4697--4705.Google ScholarGoogle ScholarCross RefCross Ref
  43. Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. 2022. Least-to-most prompting enables complex reasoning in large language models. arXiv preprint arXiv:2205.10625 (2022).Google ScholarGoogle Scholar
  44. Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. 2020a. Graph neural networks: A review of methods and applications. AI Open, Vol. 1 (2020), 57--81.Google ScholarGoogle ScholarCross RefCross Ref
  45. Xianchen Zhou, Yaoyun Zeng, and Hongxia Wang. 2020b. RoGAT: a robust GNN combined revised GAT with adjusted graphs. arXiv preprint arXiv:2009.13038 (2020).Google ScholarGoogle Scholar
  46. Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. 2020. Beyond homophily in graph neural networks: Current limitations and effective designs. Advances in Neural Information Processing Systems, Vol. 33 (2020), 7793--7804.Google ScholarGoogle Scholar
  47. Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang. 2021. Deep graph structure learning for robust representations: A survey. arXiv preprint arXiv:2103.03036, Vol. 14 (2021).Google ScholarGoogle Scholar

Index Terms

  1. Chain of Propagation Prompting for Node Classification

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MM '23: Proceedings of the 31st ACM International Conference on Multimedia
      October 2023
      9913 pages
      ISBN:9798400701085
      DOI:10.1145/3581783

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 October 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate995of4,171submissions,24%

      Upcoming Conference

      MM '24
      MM '24: The 32nd ACM International Conference on Multimedia
      October 28 - November 1, 2024
      Melbourne , VIC , Australia
    • Article Metrics

      • Downloads (Last 12 months)161
      • Downloads (Last 6 weeks)18

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader